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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

 Soybeans are an important source of protein and oil. On average, over one-third of the 

soybean mass is protein and about 20% is oil. One of the most common types of soy product 

for food applications sold in the Western marketplace is soymilk. Soymilk is the pasteurized 

extract of soaked ground soybeans, and soy protein isolates are purified fractions containing 

>90% protein (db). Soy protein isolate is extensively used as a food ingredient in many 

fabricated foods such as comminuted meat products. The recent increase in soy protein 

products consumption is the result of advances in achieving improved taste and recognition 

of health benefits. The U.S. Food and Drug Administration approved a health claim that soy 

protein positively impacts cardiovascular health in humans. 

 Novel technologies for producing and processing soy products are of great interest to 

the food industry. New technologies must assure food safety while maintaining nutritional, 

functional, and sensory characteristics that consumers demand. Thermal processing of 

soymilk leads to off-flavors, changes in color and reduced nutritional content. High-pressure 

processing (HPP) is a potential alternative for processing soymilk without exposure to 

elevated heat. Pressure treatment does not affect color and nutrients, and inactivates 

microorganisms. In the first study, our objective was to determine the impact of high-

pressure processing conditions (i.e., pressure level, pressure hold time and temperature) and 

storage atmosphere (aerobic and anaerobic) on microbiological reduction and protein 

stability during refrigerated storage. We hypothesized that higher pressures, longer dwell 

time, and higher temperature (75°C) would yield greater microbial reduction immediately 

and over refrigerated anaerobic storage.  
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Commercial production of soy protein isolates traditionally uses defatted soybean 

meal that had the oil extracted with hexane. A new screw-pressing process using CO2 as a 

displacement fluid and known as gas-supported screw pressing (GSSP) or Hyplex offers an 

environmentally friendly way to produce soybean meal with little heat denaturation. Other 

traditional screw-pressing processes involve frictional heat that denatures protein decreasing 

protein solubility. High solubility, however, is required to obtain maximum soy protein 

isolate yields.  

A simplified procedure to fractionate soy protein into glycinin- or β-conglycinin-rich 

fractions was developed by Deak and Johnson (2005, 2007). The Deak and Johnson method 

yields fractionated soy protein isolates with similar functional properties to commercial soy 

protein products. Surimi, also known as imitation crab meat, requires fillers and/or extenders 

to meet consumer demand. Soy protein isolate produced from hexane-extracted soybean meal 

is a common functional ingredient used in surimi processing. The objective of the second 

study was to determine the effects of fractionated GSSP soy protein isolates and moisture 

content on the physical properties of surimi produced from Alaskan pollock. We 

hypothesized that fractionated GSSP soy protein ingredients can be used effectively to extend 

surimi and the surimi can be further extended by adding water to above the normal level used 

in industry. 

The research reported in this thesis strives to provide groundwork for future 

efforts to develop novel processes and techniques for producing and processing soy 

products for the food industry. 
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Thesis Organization 

This thesis is organized into sections with a general introduction that covers the 

research problem and thesis organization. The literature review is in the following section 

and contains background information on the research problems. Chapters 3 and 4 are journal 

manuscripts, which is in press in Food Microbiology and has been submitted to Journal of 

Food Science, respectively. The format of the manuscripts follows that of the Journal of Food 

Science; including an abstract, introduction, materials and methods, results and discussion, 

references, and tables and figures following the text. This thesis concludes with a chapter 

offering comments on general conclusions and suggestions for future work.  
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CHAPTER 2. LITERATURE REVIEW  

Introduction 

Soybeans host a large population of microflora. Because the microorganisms 

found in soybeans get transferred and increase in numbers during the soaking and 

grinding process, soymilk must be treated to inactivate spoilage microorganisms and 

extend its shelf-life. Pasteurization is the most common practice used to extend soymilk 

shelf-life because it inactivates most known vegetative pathogens and spoilage bacteria 

(Kwok et al., 1995). Thermal treatment is also required to decrease content of anti-

nutritional factors present in soy (Yuan et al., 2008). Thermal processing, however, 

affects nutritional and quality attributes of soymilk (Achouri et al., 2007). When soymilk 

is heat-treated it develops brown color and cooked flavor. Consumers are readily able to 

assess color and flavor so it is of great importance to the industry to remove any 

unacceptable characteristics. High-pressure processing of soymilk has been reported to be 

a potential alternative to thermal treatment (Lakshmanan et al., 2006; Kajiyama et al., 

1995). High-pressure processing affects only non-covalent bonds so proteins, enzymes 

and DNA are damaged while color, taste and aroma compounds are not unaffected 

(Landau, 1967; Hayashi et al, 1989). 

Soy protein is a common functional ingredient used in meat processing to increase 

gel strength, yield and lower production costs (Lin et al., 2000). Soy protein has two 

major storage proteins, glycinin and β-conglycinin. The two fractions make up about 70% 

of soy protein isolate (Dias et al., 2003). Glycinin and β-conglycinin each have their own 

unique functional qualities. Glycinin produces stronger, harder and tougher gels, while β-
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conglycinin has higher water solubility, is a better emulsifier and affects elasticity of soy 

protein gels at high heating temperatures (Molina et al., 2001; Kang et al., 2005). 

 

High-pressure Processing 

Traditional methods in food processing rely on thermal treatments to extend the 

shelf-life and ensure microbiological safety of a food product. Nutritional and 

organoleptic changes to food can occur as side effects of the high temperatures used in 

processing. Most notably, vitamins and color and flavor compounds are adversely 

affected as well. The texture of the food can also be altered, for example vegetable and 

fruit tissues soften and become mushy (Smelt, 1997). To retain firmness, it is common to 

add chemical compounds to the food. Due to all of the changes that occur during 

processing, most processed foods are no longer similar to their original fresh forms, 

which consumers prefer. 

Consumers today desire products with long shelf-lives that retain sensory 

characteristics of the original fresh product. This demand presents a challenge for the 

food industry, and justifies the need to develop and implement new processes. New 

technologies and processes (i.e. UV radiation, high-pressure processing and ohmic 

heating) are currently under extensive research. These technologies must strike a balance 

between improving the product’s shelf-life and increasing food safety, while preserving 

the quality attributes of the food (McClements et al., 2001; Ortega-Rivas, 2007). Among 

them, high-pressure processing (HPP) has been adopted by the food industry for a few 

products including some condiments, meats, fruit, and vegetable juices (San Martin et al., 

2002). Some of the advantages of the use of HPP for these products include better quality 
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and nutritional attributes of the products compared to the thermal-treated ones. For 

instance, pressure-treated strawberry jam was preferred over the traditional thermal-

treated jam by a sensory panel, and the HPP-treated jam still retained 95% of its original 

ascorbic acid (Horie et al., 1991). However the main interest in HPP is due to its effects 

on pathogenic microorganisms and spoilage microorganisms and enzyme, therefore 

increasing the food safety and shelf-life of pressurized products without any need of 

chemical preservatives.  

HPP was first attempted by Hite in 1899, who observed that the shelf-lives of 

bovine milk could be extended with the use of pressure. The process was largely ignored 

for nearly a century until consumer’s demand for safe, additive-free, shelf-stable foods 

with maximum nutritional and sensory qualities drove the development of nontraditional 

food processing technologies (Zink, 1997).  

An HPP system consists of a pressure vessel, a pressurization system, and a 

temperature control system. In batch systems, the foods are packed into flexible 

packaging and placed in a basket inside the pressure chamber. The foods are in a 

confined space containing a fluid that acts as the pressure-transmitting medium. The 

pressure is applied isostatically, spontaneously and uniformly throughout the product, 

which allows most food products to retain their original shapes (San Martin et al., 2002; 

Ortega Rivas, 2007). HPP is usually a batch process but the food industry has built semi-

continuous lines with three or more vessels in a series. The pressure is held for the 

desired amount of time and then released. The level of pressure and holding time required 

are dependent on the food product and the purpose of the use of this technology. For 

example, if HPP is used to increase food safety, high pressure (i.e., ~ 600 MPa) is usually 
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applied. This technology could also be used to shuck oysters, and in this case lower 

pressure could be applied. There are two common pressurization methods, direct and 

indirect compression, used to generate pressure inside the vessel. Direct compression, 

although not used by the food industry, is the process where the volume of the chamber is 

reduced as pressure is applied. Indirect compression is used in the food industry. Indirect 

compression is the process of pumping a pressurizing medium, such as water, into the 

vessel without changing the volume of the chamber to reach the desired pressure. 

Initial temperatures of HPP vessels can range from -20 to 100°C. During 

compression adiabatic heating occurs in the food system. This can be beneficial for 

maximizing effectiveness of HPP technology because the microorganisms would be 

undergoing two stresses (pressure and temperature) instead of just one stress (Ardia et al., 

2004). 

 

Impact of High-pressure Processing on Microorganisms 

HPP induces changes in cell morphology, affects biochemical reactions, alters 

genetic mechanisms, and disrupts cell membranes, which all lead to microbial 

inactivation (Hoover et al., 1989; Smelt, 1998; Abee et al., 1999; Patterson et al., 1995). 

In the food industry, HPP has great potential for reducing the level of spoilage bacteria 

and pathogens in food (Lakshmanan et al., 2004; McClements et al., 2001; Ortegas-

Rivas, 2007). Factors affecting HPP inactivation of microorganisms include treatment 

temperature, pressure level, duration of time that the pressure is held (dwell time), any 

antimicrobial substances present, the type of food matrix involved and the population of 

natural microflora affect the amount of microbes inactivated or killed (Cheftel, 1995; 
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Patterson et al., 1995; Smelt, 1998; Wuytack et al., 2002). Pressure, like temperature, can 

slow; stop or even accelerate microbial activity (Smelt, 1998). 

Singer and Nichols proposed the fluid mosaic model to explain the basic structure 

of cellular membranes and pseudo-membranes of most organelles in microorganisms 

(Singer et al., 1972). In this model, a phospholipid bilayer is formed from the hydrophilic 

heads and hydrophobic tails of the lipids. Functional proteins penetrate the bilayer 

membrane to form an amphiphilic structure in which polar groups protrude from the 

bilayer into an aqueous phase, and nonpolar groups are buried in the hydrophobic interior 

of the bilayer. When pressure is increased, membrane fluidity decreases and a phase 

transition occurs. During pressure treatment, the phospholipid bilayer becomes agitated 

and the integral and peripheral membrane proteins begin to detach from the plasma 

membrane. As pressure increases, greater damaged is inflicted on the cells. Pressures of 

~100 MPa can affect the nuclear membrane of yeasts while at higher pressures (400-600 

MPa) there are pressure-induced changes in the mitochondria and the cytoplasm of the 

cell. 

Under pressure, only non-covalent bonds are affected by the treatment. Proteins, 

enzymes and DNA could be damaged (Landau, 1967) while color, taste and aroma are 

not affected (Hayashi et al., 1989). The capability of HPP to inactivate microorganisms 

has been the subject of intensive research (O’Reilly et al., 2000; Smelt, 1998). 

There is a considerable body of literature on the effect of HPP parameters and 

environmental conditions on microorganism inactivation. HPP inactivates many types of 

vegetative cells, while spores are resistant to pressures up to 1,000 MPa (Matser et al., 

2004). Due to this resistance, the current trend is to implement the use of hurdle 
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technology which is the combination of HPP and some other treatment, such as a thermal 

treatment (Ross et al., 2003). 

Mechanisms of inactivating Listeria monocytogenes, Salmonella, Staphylococcus 

aureus, Escherichia coli O157:H7, Salmonella enteritidis and Salmonella typhimurium 

have been extensively studied (Alpas et al., 2000; Bozoglu et al., 2004; Lakshmanan et 

al., 2004). There is evidence that pressure-injured cells will leak metal ions. This leakage 

becomes noticeable at pressures over 300 MPa (Nakatomi et al., 1993). It was observed 

that Saccharomyces cerevisiae cells underwent 25% volume reduction that corresponded 

to leakage of Na+, Li+ and Ca2+ ions after pressurization (Perrier-Cornet, 1998). The type 

of ions present in the food product, as well as the type of microorganisms present and 

temperature, can affect the level of baro-tolerance (Michiels et al., 1996).  

DNA is believed to be cleaved during pressure treatment and could be another 

cause of inactivation. DNA cleavage is enzymatically controlled and can be reversible. 

High pressure interferes with DNA replication. In Saccharomyces cerevisiae, pressure 

induced tetraploidy (Hamada et al., 1992). DNA and RNA condense in Listeria 

monocytogenes and Salmonella typhimurium when under pressure (Mackey et al., 1994). 

Condensation has been seen in other cases and found to be reversible, since it is 

enzymatically controlled. It is hypothesized that under pressure endonucleases come into 

contact with DNA, which results in the DNA being cleaved. 

Low water activity has a baroprotective effect on microorganisms and can 

increase resistance to pressure (Iwahashi et al., 1996). The shape of the bacterial cell can 

also affect sensitivity to pressure, with rods being more sensitive than cocci (Ludwig, 

1996). Gram-positive microorganisms are more resistant to pressure than Gram-negative 
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(Hoover, 1989). Also, the sensitivity of microorganisms to pressure is dependent on the 

strain.  

Temperature at which HPP occurs has a major effect on microbial inactivation; 

the optimum microbial lethality was observed at 50°C and 500 MPa (Gervilla et al., 

2000). Under the same treatment the response can differ greatly between 

microorganisms. The effects of pressure between different species are believed to be 

dependent on pressure and are not the same for every organism.  

Exponentially growing cells are more sensitive to pressure than cells in the 

stationary phase (Smelt, 1997; Mackey et al., 1995). Lactobacillus plantarum, a food 

spoilage organism, is more resistant to pressure when in the exponential phase growing at 

suboptimal temperature (Smelt et al., 1994). 

Enzymes can be denatured under pressure. Enzymes have an optimum 

temperature where they are most resistant to pressure (Ludikhuyze et al., 2003). Similar 

results have been observed for microorganisms and bacteriophages, there has been some 

evidence showing that microbial enzymes could be the main target of pressure resistance 

in mesophilic microorganisms stabilized by pressure (Jaenicke, 1991). Other major 

targets of HPP inactivation could be protein denaturation, decrease in intracellular pH, 

and denaturation of enzymes associated with the efflux of protons. ATPase enzymes are 

involved in ion movement and can be denatured by pressure (Thom et al., 1984). When 

HPP inactivates the enzyme, the cell is no longer able to multiply. When a cell is 

damaged by HPP, it also becomes more sensitive to environmental stresses, which is a 

similar result with thermal treatment. 
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Microorganism Injury Recovery 

It is now well established that the inactivation process occurs in two steps: a rapid 

linear decline in cells, followed by a slower decline, known as a tailing effect 

(Kalchayanand et al., 1998; Alpas et al., 2000). The tailing effect occurs at the pressure 

where almost all cells are inactivated and little to no recovery occurs after pressurization.  

HPP can sub-lethally injure substantial amounts of cells (Wuytack et al., 2002; 

2003). Injury can easily be measured by comparing the growth of pressure-treated cells 

on nonselective media to cells grown in selective media, or media containing substances 

that add stress to the cells, such as NaCl, sodium dodecyl sulfate or low pH (McClements 

et al., 2001; Patterson et al., 1995). Pressure-damaged E. coli cells were able to repair 

their outer and inner membrane after pressurization at 400 MPa for 2 min at 20˚C 

(Chilton et al., 1996). The sub-lethally injured E. coli was unable to repair its inner and 

outer membranes in the presence of bile salts, NaCl and different antibiotics. The injured 

cells were unable to repair the inner membrane, suggesting that many cellular processes 

are required to repair the inner membrane (Chilton et al., 2001) 

The sub-lethally injured bacterium may not be detected because the injured cell 

cannot grow on selective media until it has recovered enough to multiply (Patterson et al., 

1995). Injured cells can fail to grow on selective media immediately after treatment and, 

therefore, the food may be mistakenly considered void of microorganisms (Patterson et 

al., 1995; Wu, 2008). 

Recovery during storage of cells injured during HPP treatment has been reported, 

and is a major food safety concern (Wu, 2008). Damaging the cell membrane is 

considered to be a critical step in the events leading to inactivation of pressure-treated 
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microorganisms (Smelt 1998; Wouters et al., 1998). With pressure treatment, however, 

some cells may survive after being damaged and repair any pressure-induced damage to 

their membranes. Pressure-induced injury in cells can be repaired within 1-15 days, 

which poses a problem for processors that cannot detect sub-lethally injured cells 

(Bozoglu et al., 2004). Injured cells that are unable to multiply and form colonies on 

nonselective media may survive, but may not be detectable immediately after 

pressurization. This could be misleading and the number of inactivated cells could be 

over-estimated because injury recovery is not taken into account. The detection level of 

the method will also play a role in estimating the efficacy of the pressure treatment. 

Inaccurately measuring inactivation may increase the risk of spoilage or even food 

poisoning and is a critical step in assuring the food safety of pressurized food. It has been 

suggested that cells can be sublethally injured with mild pressure and their growth could 

then be inhibited if the food is lightly preserved, it would be the same type of inhibition 

as injured cells grown on nonselective media with 4% NaCl added (Ulmer et al., 2000). 

Certain strains of bacteria are able to develop baro-tolerance when subjected to 

cycles of pressurization, with the survivors being regrown after each cycle (Hauben et al., 

1996). Injury recovery of pathogenic bacteria has been observed in various food matrices: 

nutrient broth, milk, phosphate buffer and ground pork after HPP treatment and being 

stored between 6 h and 4 wk at various temperatures (Bozoglu et al., 2004; Bull et al., 

2005; Chilton et al., 2001; Ellenberg et al., 1999; Koseki et al., 2006). 
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Pressure Resistance in Microorganisms 

It has not been discovered if pressure can induce cells to become more resistant to 

physical treatments, but it is known that cells subjected to stress other than pressure can 

become more resistant to pressure. One possible mechanism is that membrane-bound 

enzymes are stabilized during stress and can influence resistance (Smelt et al., 1997).  

Bacterial spores are notoriously resistant to environmental stress, as well as 

thermal treatment and high pressure. It remains unknown what the mode of action is for 

pressure on bacterial spores. Certain pressure levels can induce spore germination and 

then the germinated spore is more sensitive to pressure and can be inactivated. Spore 

germination does not always need to be pressure-induced. Lowering the pH or heating 

can both induce activation. Activation is reversible, but germination usually quickly 

follows activation. The mechanism of how pressure induces activation remains unknown, 

it is possible that it could be similar to low pH or heating activation, which is reversible 

or could cause irreversible germination. Viruses vary genetically considerably and with 

that variance come different levels of pressure resistance. Bacteriophages, which are 

protein-DNA viruses, can be reduced significantly at pressures of 300-400 MPa (Brauch 

et al., 1990). The Sindbis virus, which has a lipid coating, can retain full virulence at 

pressures from 300 to 700 MPa at temperatures as low as -20°C (Butz et al., 1992). 

 

Soymilk Processing 

Soybeans are greatly valued by the food industry for its high oil and protein 

contents. Among all soy foods, soymilk is consumed in highest quantities (Savitry et al., 
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2004). Soymilk is a liquid extract from soaked soybeans that have been ground and 

strained to remove all water-insoluble components (Guo et al., 1997; Munoz et al., 1998). 

The food industry has gone to great lengths to reduce and remove off-flavors and beany 

flavor that are considered unacceptable by most Western consumers. The resulting 

soymilk has mild flavor, which has led to wide acceptance of soymilk in the Western 

market (Wang et al., 1994; Huang et al., 2004). 

Soymilk sales have rapidly increased in North America and even internationally. 

Soymilk sales have increased over 300% in the past decade. Sales in the United States 

alone went from $500 million in 2001 to $622 million in 2003. Annual growth in soymilk 

consumption has been 25% (Savitry et al., 2004). In addition to the improvement in taste,  

the increase in soy product consumption can be attributed to the U.S. Food and Drug 

Administration authorizing in 1999 the claim that soy proteins can help control heart 

disease in humans (Kennedy, 1995; Huang et al., 2004). 

Soymilk can be sold in aseptic packaging to achieve a non-refrigerated shelf-life of at 

least a year (Yuan et al., 2008). Usually, soymilk is sold in the refrigerated section after ultra-

high-temperature pasteurization that gives up to 12 wk of shelf-life (Kwok et al., 1995). 

Regardless whether the soymilk is refrigerated or shelf-stable, both products undergo heating 

processes, which alter the color, decreases the nutritive value, and can create cooked flavors 

(Guerra-Hernandez et al., 1999; Fernandez-Artigas et al., 1999). Thermal processing, 

therefore, affects nutritional and sensory attributes of soymilk. Production of strong off 

flavors is a challenge to developing soy foods that are appealing to consumers, and 

negatively impacts the use of heat-treated soymilk as an ingredient (Kwok et al., 2000; 

Achouri et al., 2007). More deterioration of color and flavor of soymilk during thermal 



www.manaraa.com

15 

processing is associated with increased heating time (Kwok et al., 1995; 2000). Chemical 

changes in soymilk can continue during storage, but few studies have been conducted to 

evaluate the changes occurring in soymilk after treatment and during storage (Schroder et al., 

1985; Erickson, 1997; Rysstad et al., 1998; Skibsted, 2000). Fresh soymilk, therefore, has a 

very short shelf-life, which limits consumption to the areas close to the production site.  

HPP of soymilk has been reported in few studies to be a potential alternative to 

thermal treatment (Lakshmanan et al., 2006; Kajiyama et al., 1995); however, no 

investigations have focused on optimizing processing parameters on soymilk shelf-life 

extension.  

Alaskan Pollock Surimi Production 

Surimi is the Japanese term for mechanically deboned fish flesh that is minced 

and mixed with cryoprotectants to extend the frozen shelf-life, and cooked (Nagai et al., 

2007). Ideal surimi is white in color, firm in texture, and moist. Surimi is commonly used 

as a base ingredient in the production of Kamaboko, a Japanese fish loaf, and shellfish 

substitutes commonly known in the United States as imitation crab meat (Park, 2005).  

Surimi paste production begins immediately upon catching the fish, generally 

Alaskan pollock. The fish flesh is mechanically deboned and then minced into a paste. 

The paste is then washed several times. Depending on the species of fish, extensive 

washing can be necessary to remove fat and undesirable materials that may affect 

functionality or color of the surimi. The resulting surimi should be translucent and have a 

mild odor (Park, 1995). 

After washing, cryoprotectants are added to prevent denaturation of actomyosin 

during frozen storage. It was discovered in the 1960’s that low-molecular-weight 
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carbohydrates when added to surimi paste can stabilize the proteins and act as a 

cryoprotectant (Scott et al., 1988). Without a cryoprotectant the proteins in surimi 

undergo changes during frozen storage. The muscle proteins can become denatured and 

dehydrated which causes conformational changes to occur. Ice crystal formation, pH and 

ionic strength can also affect protein functionality (Park, 1994). Other changes during 

frozen storage include decreased in water-holding capacity and gel-forming ability of the 

surimi gels (Iwata et al., 1971). The decreased in functionality is due in part to the 

disintegration of myofibrillar proteins. The three-dimensional gel network cannot develop 

if the myofibrillar proteins are no longer structurally intact (Morrissey et al., 1993). After 

cryoprotectants are added, the commercial surimi paste is kept frozen for storage and 

shipping to processing plants.  

During processing the surimi paste is thawed and chopped, and the protein 

content is adjusted to 78-85% moisture content by the adding of water. Salt is always 

added to surimi flesh to thicken the paste and extract the myofibrillar proteins. 

Solubilization of myofibrillar proteins is a prerequisite for the gel formation (Sano et al., 

1988; Choi et al., 2000).  

Protein gelation is fundamental to surimi production. One major concern in the 

production of surimi is the formation of modori. Modori is the weakening of a gel due to 

myosin degradation, and is a result of endogenous heat-activated proteases, which 

become active in the 50-70°C range (Jiang, 2000). The industry usually adds functional 

ingredients that contain protease inhibitors such as beef plasma protein, egg white and 

whey proteins to overcome this problem (Benjakul et al., 2004).  
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The seafood analogs are prepared by adding ingredients such as starch, egg white 

proteins, salt and vegetable oils to the surimi paste (Campo et al., 2008). The paste is then 

heated to form an elastic gel (Numakura et al., 1990). The heating process is done in two 

steps to form a stronger gel than could be achieved by a single heating process (Park, 

2005). The initial heating step is conducted at moderate temperature, around 40°C, which 

“sets” the gel. Setting is commonly used in the production of surimi (Lanier, 1986). A 

softer and more deformable gel is formed with the addition of sodium chloride when the 

surimi paste is held at low temperature without a second heating step but, a second 

heating step at higher temperatures yields a much stronger gel. Heat setting is not always 

necessary; surimi paste can be set at refrigerator temperatures if held overnight prior to 

further heating (Lanier et al., 1982). Industry prefers a short setting time to reduce cost 

and production time. The second heating step is conducted at high temperatures (>80°C) 

to form a rigid and irreversible gel (Montejano et al., 1984). 

 

Alaskan Pollock 

The ideal fish for surimi production is white fleshed and low in fat. Alaskan 

pollock is widely used in surimi production due to its white flesh, low fat, uniform size, 

ability to form strong gels and a large harvest size (Yoon et al., 2004). After the 

discovery that cryoprotectants prevent protein denaturation during frozen storage the 

Japanese could fish at sea for extended periods of time and could harvest, process and 

store the frozen surimi on the vessels. This increased surimi production and sales in 

Japan, and later globally. World-wide the harvest quantity and quality have steadily 

decreased over the last decade due to over-fishing and poor management practices. The 
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Russian Alaskan pollock industry collapsed and Japan’s industry has steadily declined, as 

has America’s industry. This trend has leveled off in recent years due to better 

technology and processing techniques that recover more meat and have less waste (Reed 

et al., 2008). Even with these advancements in processing only 50% of U.S. pollock 

captured is used for surimi production while the rest is utilized in fillet production.    

 

Surimi Gelation 

Alaskan pollock muscle is composed of striated muscle fibers that are in turn 

composed of myofibrils. Myofibrils are formed from contractile units called sarcomeres. 

The sarcomeres contain three types of filaments: thick, thin and connecting. Disassembly 

of the sarcomere is necessary to form a strong heat-induced gel. Myosin makes up 55-

60% of the myofibrillar proteins. Myosin has both a globular domain, which is round in 

shape, and a fibrous domain, which is long and thin in shape. The globular domain is 

formed from two heavy amino acid chains, which are large polypeptides, and two pairs of 

light chains, which are small polypeptides. The N-terminal ends of the heavy chains fold 

into themselves to form an elongated pear shape to form the globular heads. The globular 

heads have ATPase activity, but postmortem, in the absence of ATP, the globular heads 

will bind to actin. The fibrous or “rod” domain has a C-terminal region and an N-

terminal. The N-terminal of the rod domain connects the globular head to the C-terminal 

of the myosin (Park, 2005).  

Actin constitutes 15-30% of the myofibrillar protein. Actin is the predominant 

protein found in the thin filaments of the sarcomere, and in the surimi itself. Actin is 

globular in shape, and will polymerize to form the actin filament which is referred to as 
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“fibrous actin”. The fibrous actin is bound with myosin to form actomyosin. The heat-

induced gel properties of actin are dependent on the concentration and properties of the 

actomyosin in the surimi.  

There are other fractions of proteins associated with myosin or actin that are 

necessary for the structural integrity of the sarcomere. The fractions can be removed by 

solubilization or degradation. Disassembly of the sarcomere during processing is 

important for even distribution of protein in the heat-induced gel structure. The process of 

forming a gel involves denaturation, dissociation-association and aggregation of proteins 

(Hermansson, 1986).  

Surimi gel is a three-dimensional network formed from hydrogen bonds, ionic 

linkages, hydrophobic interactions, and covalent bonds. Prior to heating, hydrogen bonds 

maintain the protein structures, during heating the hydrogen bonds are broken and the 

protein unfolds. The unfolded protein’s peptide backbone becomes hydrated and the 

water in contact with the protein becomes structured or clustered. This hydration is 

important for water-holding capacity of the heat-induced gels formed from protein-

protein aggregation (Park, 2005).  

Salt bridges also known as ionic linkages, are abundant along the myosin rod 

domain. On the rod domain at neutral pH glutamic acid and aspartic acid are negatively 

charged, while lysine and arginine are positively charged. The attraction between charges 

forms salt bridges and the proteins form an aggregate which is insoluble in water. Salt 

bridges are considered to be the most important force in the assembly of myosin thick 

filaments (Miroshinichemnko et al., 2000). The addition of salt disrupts the attraction 

between charges and lead to disassembly of the thick filaments. This is why salt is added 
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to surimi paste; it breaks the salt bridges and disperses the proteins. Even dispersion of 

proteins is necessary for the development a flexible and elastic structure in the heat-

induced gels (Niwa, 1992).  

Hydrophobic interactions result from the unfolding of the proteins during heating. 

The interior of folded proteins is composed of hydrophobic amino acids, while the 

exterior of the proteins is composed of hydrophilic amino acids. The unfolded protein 

exposes its hydrophobic groups which promotes the formation of hydrophobic clusters, 

and protein-protein interactions (Park, 2005). Hydrophobic areas of a protein closely 

associate with other hydrophobic areas of proteins. This association results in protein 

aggregates formed from the binding of the proteins. Under certain conditions, 

hydrophobic interactions lead to a gel network. Disulfide bonds are formed by the 

oxidation of two cysteine residues on neighboring proteins. These covalent bonds are 

formed during heating surimi above 40°C, which occurs during the second heating step.  

 

Texture and Color of Surimi 

Texture and color are major quality characteristics of surimi. A surimi gel should 

be cohesive and elastic while being light in color. Assessing the texture of surimi after 

gelation is the primary method for determining its quality (Lanier, 1992). 

High-grade surimi has a distinctive rubbery mouth feel that relates to a low value 

of the stiffness/cohesiveness ratio (Lanier, 1986). The rubbery mouth feel is due to the 

elastic behavior of the surimi gel (Niwa, 1992). Shear strain (gel cohesiveness) is also an 

indicator of protein quality, but is not affected by moisture content until the moisture 

level reaches or exceeds 81% (Hamann et al., 1992).  
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The hardness and strength of surimi gels can be affected by protein concentration, 

heating temperature, and heating time, as well as moisture content (Harper et al., 1978; 

Camou et al., 1989). At high moisture contents (>75%) surimi gels have rubber-like 

elastic characteristics with covalent bonding and hydrophobic interactions (Niwa, 1992; 

Lee et al., 1997; Benjakul et al., 2001). The mineral content of the water is also 

important. Calcium and magnesium can cause texture changes in surimi (Lee, 1990). 

Water is added to maintain consumer accepted texture while decreasing the cost 

of production. The water molecules act as a protein stabilizer due to the proteins 

hydrophobic residues. In water, the protein structure can remain stable until heating when 

the hydrophobic sites are exposed. The addition of water disperses the proteins while 

allowing an expanded gel network to form during heating. The correct amount of water to 

add is important as too much water can decrease gel hardness (Lanier et al., 1985). 

Whiteness of the surimi is also an important quality attribute (Choi et al., 2000). 

The whiteness value is calculated from the Lab values. The L* value measures the 

lightness of the surimi gel, the a* value is a measure of how red or green the gel is, and 

the b* value is a measure of how yellow or blue the gel is.  

Whiteness = 100 – [(100-L*) 2 + a*2 + b*2]1/2 

Water quality affects the color of surimi. Iron and manganese present in water can alter 

the color of the surimi gel. Increasing the moisture content of surimi gels creates a lighter 

and less yellow gel, which increases the whiteness values (Park, 1995). Concentration 

and properties of added ingredients also affect the color of the surimi gel. Vegetable oil 

creates a whiter gel. Increasing the oil concentration in the gel increases the lightness and 

yellowness of the gel. Concentration and type of starch added can alter surimi gel color. 
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The addition of incompletely swollen starch granules creates a more opaque and yellow 

gel as the concentration is increased while the addition of fully swollen starch granules 

create a more translucent and less yellow gel (Park, 1995).  

Color and texture are affected by heating time and method (Bertak et al., 1995). 

The temperature in the second step of the heating process is important, excessively high 

heating temperature causes separation and reduced water-holding capacity in some gels 

due to the formation of large aggregates and pores. The large pores that are formed 

increase syneresis because the water is not held as firmly (Stanley et al., 1992). The 

greater the syneresis, the weaker and less stable the gel becomes.  

 

Functional Additives in Surimi 

The addition of filler ingredients has been used to extend surimi to meet the 

demand of the market. There are five proposed models for the spatial partitioning of a 

gelling protein and an additive (Ziegler et al., 1990). In single-phase gels, the additive 

remains soluble in the fluid of the gel matrix. In second-phase gels, separation occurs 

between the additive and the gel; this is commonly found when starch is added to the 

surimi paste and the paste is cooked with the final result having a distinct layer of starch 

separate from the surimi gel. The third model involves “complex” gels, the surimi and the 

additives form interactions which lead to a gel. Two or more proteins co-polymerizing to 

form a network; this is considered a fourth model. The fifth model is an interpenetrating 

network where there is an increase in shear stress without an increase in shear strain 

(Yongsawatdigul et al., 1996).  
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Ingredients used to extend surimi are usually considered to be natural and healthy, 

to suit consumer preferences. These ingredients also improve the texture of the surimi. 

The texture of surimi can be modified with the addition of starch, hydrocolloids and 

protein additives, which act as filler or extenders (Lee et al., 1992). Starch, dried egg 

white and soy protein isolate (SPI) are major functional ingredients in the surimi industry 

because of their abilities to form gels and retain water, while being light in color (Choi et 

al., 2000). Starch is mainly used to maintain gel strength while extending the surimi. 

Starch is commonly used as an extender because of its ability to swell, hold water, and 

maintain gel strength during refrigerated and frozen storage, while using less surimi 

(Park, 2000). Dried egg white has better gelling properties than liquid egg white and 

when added to surimi can inhibit gel softening, increase whiteness and act as a 

cryoprotectant. Heating temperature, water uptake, and the size of the swollen granule 

affect starch gelatinization in protein gel (Wu et al., 1985).  

The functional advantages of protein additives are their abilities to improve gel 

firmness, elasticity, inhibition of heat-stable proteases, and anti-retrogradation of starch 

during refrigerated and frozen storage (Park, 2005). Replacing fish protein with SPI 

leaves less myofibrillar protein in the surimi and therefore less myofibrillar protein is 

available to be degraded. SPI is a common functional ingredient in meat processing 

added to enhance texture, yield and flavor and reduce production costs (Lin et al., 2000). 

Sugar, sorbitol and salt are commonly added in varying concentrations as cryoprotectants 

to stabilize myofibrillar protein, and maintain functionality of the fish proteins 

(Matsumoto, 1979; Park, 1988; Lanier, 1990).   
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Nutritional and Functional Properties of Soy Protein 

Soybeans are a versatile commodity because of their unique functional properties, 

high protein content, nutritional value, and perceived health benefits (Deak et al., 2006). 

Soybean seeds contain between 35-46% protein content at maturity (Nagano et al., 1992). 

Soy protein is considered one of the most important ingredients used in the food industry 

for the production of gels (Salleh et al., 2004). 

SPI is derived from defatted soy flakes by extracting with alkali and precipitating 

at pH 4.5. SPI contains >90% protein (dry basis) and is comprised mostly of glycinin and 

β-conglycinin which are the major storage proteins found in soy beans.. Glycinin 

(primarily 11S) and β-conglycinin (primarily 7S) make up about 70% of the protein in 

SPI (Dias et al., 2003). Glycinin is formed from acidic and basic polypeptides linked by 

disulfide bridges (Utsumi et al., 1987). β-Conglycinin is a trimeric glycoprotein 

consisting of three types of subunits, α′, α, and β, in seven different combinations (Thanh 

et al., 1976). At certain protein concentrations, the β-conglycinin subunits aggregate and 

become insoluble during heating (Utsumi et al., 1984). 

Nutritional benefits and functionality are important properties to be considered 

when choosing a protein additive. Soy protein is a major source of vegetable protein due 

to its availability and low cost. In 1999, the U.S. Food and Drug Administration 

authorized the health claim that soy protein can help control heart disease in humans. Soy 

protein has the physiological function to lower cholesterol and triglycerides levels in 

human serum (Kito et al., 1993; Aoyama et al., 2001). It has been suggested that β-

conglycinin fraction has greater health benefits than glycinin (Manzoni et al., 2003; 

Duranti et al., 2004).  
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Soy protein is largely utilized in the food industry because of its functional 

properties (Deak et al., 2006). The functional properties of soy proteins are due to their 

structure’s surface hydrophobicity and sulfhydryl cross-linking. Glycinin and β-

conglycinin each have their own unique functional qualities. Glycinin produces stronger, 

harder and tougher gels while β-conglycinin has higher solubility, is a better emulsifier 

and affects elasticity of soy protein gels at high heating temperatures (Molina et al., 2001; 

Kang et al., 2005). Processing, intrinsic and environmental factors affect the functional 

properties of protein ingredients (Kinsella, 1979). Commercial SPI can have different 

functional properties due to processing conditions that can cause differences in protein 

denaturation and aggregation (Hermansson, 1986). In meat applications, commercially 

produced SPIs are partially or fully denatured to enhance their functional properties 

(Hermansson, 1986; Chronakis et al., 1995). 

 

New Processes for Making Soy Protein Isolate and Fractions 

SPI is conventionally produced using hexane as the solvent to extract oil. Crown 

Iron Works (St. Paul, MN, U.S.A.) and Safe Soy Technologies (Ellsworth, IA, U.S.A.) 

have developed a new process using CO2 as a displacement fluid to displace the oil from 

dehulled and flaked soybeans; the process has been termed gas-supported screw pressing 

(GSSP) or HYPLEX. SPI and glycinin-rich and β-conglycinin-rich fractions were 

produced via the Deak and Johnson method at pilot-plant scale from GSSP soybean flour 

for this project (Deak and Johnson, 2005, 2007; Deak et al., 2006). Nazareth et al. (2009) 

reported similar functionality for SPI produced from GSSP meal as produced from 
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commercial white flakes (hexane extraction of dehulled, flaked soybeans and flash- or 

downdraft-desolventized to minimize protein denaturation). 

To produce an enriched glycinin fraction, a reducing agent should be added 

before precipitating glycinin. The reducing agent is usually SO2 in the form of sodium 

sulfite. Adding a reducing agent prevents co-precipitation of glycinin and β-conglycinin 

(Thiering et al., 2001). Glycinin preferentially binds calcium ions, which is surface 

charge dependent (Rao et al., 1976). The Deak and Johnson method was able to produce 

glycinin and β-conglycinin enriched fractions from GSSP defatted soybean meal using 

calcium chloride and sodium sulfite. The fractions had high yields of solids, protein and 

isoflavones, and similar protein purities compared to fractions produced by traditional 

methods. The GSSP fractions produced in the pilot plant had the same level of 

enrichment as soy protein fractions produced from white flakes in the laboratory. It has 

yet to be determined if GSSP soy protein ingredients can be used to extend surimi and if 

the functionality of these proteins would favor incorporation of additional water in 

surimi. 
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Abstract 

The effects of pressure (400, 500 and 600 MPa), dwell time (1 and 5 min) and 

temperature (25 and 75°C) on microbial quality and protein stability of soymilk during 28 

days of storage (4°C) were evaluated under aerobic and anaerobic conditions. After 

processing and during storage, there were significant differences in total bacterial count 

(TBC), numbers of psychrotrophs (PSY) and Enterobacteriaceae (ENT), and protein 

stability between untreated (control) and pressurized samples (P < 0.05). Pressure applied 

at an initial temperature of 75°C resulted in a greater suppression in growth of PSY 

compared to TBC. No ENT was detected in pressurized samples throughout the storage 

period tested. Dwell time had no significant effect on log reduction of TBC at 25 or 75°C 

(P > 0.05). Pressure at 400 MPa (5 min), 500 and 600 MPa (1 and 5 min) produced 100% 
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sub-lethal injury in surviving bacterial populations irrespective of temperature. After 28 

days of refrigerated storage, both aerobic and anaerobic pressurized samples had 

better or similar stability as the control on day one of storage. Soymilk control samples 

were spoiled after 7 days whereas pressurization increased soymilk shelf-life by at least 2 

weeks. Pressure (600 MPa) at 75°C for 1 min not only significantly reduced initial 

microbial populations and increased the microbial shelf-life but also extended the protein 

stability of soymilk (P < 0.05). 

 

Introduction 

Consumer’s demand for safe, additive-free, shelf-stable foods with optimum 

nutritional and sensory qualities has driven the development of non-traditional food 

processing technology (Zink, 1997). One must balance the improving product shelf-life 

and increasing food safety while preserving sensory and nutritional quality attributes 

(McClements et al., 2001; Ortega-Rivas, 2007). Among them, high-pressure processing 

(HPP) has been adopted by the food industry for treating many foods including 

condiments, meats, and fruits and vegetable (San Martin et al., 2002).  

There is a considerable body of literature on the effects of HPP parameters and 

environmental conditions on inactivating microorganisms. Treatment temperature, level 

and duration of treatment, and amount of initial microflora affect the amount of microbes 

inactivated (Cheftel, 1995). Recovery of sub-lethally injured cells during HPP has been 

reported and is a major food safety concern (Wu, 2008). For example, pressure-injured 

Escherichia 
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coli cells were able to repair their outer and inner membranes after pressurization (400 

MPa) for 2 min at 20°C (Chilton et al., 2001). Injured cells may not grow on selective 

media immediately after treatment and there is the risk of mistakenly considering 

a food to be void of microorganisms (Patterson et al., 1995; Wu, 2008). The extent of 

recovery of sub-lethally injured cells depends on many parameters including type of food 

product, processing conditions, and storage conditions, which justify the need to 

determine sub-lethal recovery for a specific food product.  

Soybean foods have become increasingly popular since the Food and Drug 

Administration approved the soy protein health claim in 1999 (FDA (1999)). According 

to that claim, 25 g of soy protein per day may reduce the risk of heart disease. Soymilk is 

a liquid extract from soaked and ground soybeans, which contains most of the soybean 

components including protein, lipid and saccharides (Guo et al., 1997). Consequently, 

fresh soymilk has a very short shelf-life, which limits consumption to areas close to the 

production site. Thermal processing is the most common practice used to improve the 

microbial safety and extend the shelf-life of soymilk because it inactivates vegetative 

pathogens and many spoilage bacteria (Kwok and Niranjan, 1995). The use of ultra high-

temperature (UHT) is relatively new for soymilk production and the traditional 

processing involving temperature of 90–100°C, applied up to 30 min (Yuan et al., 2008). 

In some conditions, thermal processing, however, detrimentally affects nutritional and 

quality attributes of soymilk, and produces strong off flavors (Lozano et al., 2007). It 

limits the development of soy foods that are appealing to consumers and negatively 

impacts the use of heat-treated soymilk as an ingredient (Kwok et al., 2000; Achouri et 

al., 2007). Because of these detrimental effects of thermal treatment on soymilk 
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properties, other processing methods such as high-pressure homogenization, high-

pressure throttling, and pulsed electric field have been applied to soymilk (Smiddy et al., 

2007; Sivanandan et al., 2008; Li et al., 2008). 

HPP of soymilk would be considered as a potential alternative to thermal 

treatment only if it could improve its microbial, sensorial, nutritional and quality 

attributes. Its effect on lipoxygenase activity, trypsin inhibitors, and protein properties 

and functionality, which are parameters that will affect soymilk attributes, has been 

previously reported (Tangwongchai et al., 2000; Van der Ven et al., 2005; Lakshmanan et 

al., 2006; Kajiyama et al., 1995). The benefits of applying high pressure to provide 

microbial safety and extend shelf-life have been reported for dairy and human milk, but 

not yet on soymilk (Viazis et al., 2008; Hayman et al., 2007; Garcia-Risco et al., 1998; 

Huppertz et al., 2006; McClements et al., 2001). The present study aims to evaluate the 

impact of HPP conditions (pressure, temperature and dwell time) on changes in bacterial 

populations and protein stability of refrigerated soymilk. Additionally, the extent of sub-

lethal injury to populations of bacterial survivors in soymilk following HPP was 

determined. In the present study, processing conditions were chosen based on industry 

practices with dwell times of less than 5 min and maximum pressure of 600 MPa.  

 

Materials and Methods 

Soymilk production 

Lipoxygenase-free cultivar soybeans (IA 1008) were washed with deionized 

water to remove dirt and soaked for 12 h at room temperature. After soaking, the beans 

were ground in a 4-L Waring heavy-duty laboratory blender (Waring, New Hartford, CT, 
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U.S.A.) at low speed for 1 min at a 1:8 soybean-to-water ratio. After blending, the slurry 

was pressed in a 100-mesh nylon filter sack and water was added to reach a final 1:10 

soybean-to-water ratio. The pH of the soymilk was adjusted to pH 7.0 using 2 N NaOH.  

 

High-pressure processing 

Five- and 10-ml aliquots of soymilk were sealed with a tabletop vacuum chamber 

machine (Multivac Inc., Kansas City, MO, USA) in polyester bags (reference 404, 

KAPAK Corporation, Minneapolis, MN, USA) so that the headspace in the pouches was 

kept to a minimum. The pouches were 0.063 cm in thickness, an oxygen permeability of 

118.65 cc/m2/day (ASTM D-3985) and a carbon dioxide permeability of 845 cc/m2/day, 

at 23°C. Samples were pressurized in a FOOD-LAB 900 Plunger Press system (Stansted 

Fluid Power Ltd, Stansted, UK). A T-thermocouple was placed directly inside a polyester 

bag to record temperature of soymilk during HPP treatments. Soymilk samples were 

pressurized at 400, 500 and 600 MPa at initial temperatures of 25 and 75°C for dwell 

times of 1 and 5 min. For treatment at 75°C, soymilk was preheated for 5 min at 75°C 

prior to pressurization in a water bath, and were transferred into the HPP vessel and 

pressurized within 30 s after heat treatment. The initial temperature of the pressurization 

fluid inside the vessel was 25 or 75°C, and propylene glycol was circulated at these 

temperatures through the external jacket of the vessel. The average quasi-adiabatic 

temperature increases upon compression were 1 and 2°C/100 MPa at 25 and 75°C, 

respectively. The average rate of pressurization was 350 MPa/min and depressurization 

occurred within 5 sec. 
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Storage of soymilk 

Both pressurized and non-treated (control) samples were stored at 4 ± 0.4°C for 

up to 28 days. Designated samples were aseptically opened using a sterile scissors then 

closed, using metal paper clips, for aerobic storage conditions. This procedure simulated 

consumer use and storage of store-bought soymilk. The other treated and control samples 

remained sealed (anaerobic storage) to simulate unopened packages of soymilk.  

 

Microbial analysis 

Immediately after treatment, and every 4 days thereafter, duplicate samples of 

soymilk were analyzed for each treatment. One-ml aliquots of each sample were serially 

diluted (10-fold) in 0.1% peptone (Difco, Becton Dickinson, Sparks, MD). Aliquots (0.1-

ml) of appropriate dilutions were plated onto tryptic soy agar (TSA; Difco). In instances 

when bacterial survivors were beyond detection in 0.1-ml samples, 1.0-ml aliquots of 

soymilk were surface-plated over five agar plates (0.2 ml per plate). Inoculated TSA 

plates were incubated at 30°C for 48 h and at 4°C for 7 – 10 days to determine total 

bacterial count (TBC) and numbers of psychrotrophs (PSY), respectively. The pour plate 

technique with TSA and violet red bile Agar (VRBA) overlay were used to enumerate 

Enterobacteriaceae. The inoculated TSA/VRBA plates were incubated at 35°C and 

bacterial colonies were counted at 24 h. TSA and TSA with 5% NaCl (TSAN) were used 

as non-selective agar and selective agar, respectively, for determining the percent injury 

among bacterial survivors just after HPP treatment. Percentage injury was calculated 

using the following equation: 
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Percent Injury = [(CFU/ml on TSA – CFU/ml on TSAN) ÷ CFU/ml on TSA] x 

100 

 

Stability and pH 

Aliquots (1.5-ml) of soymilk were subjected to centrifugation (1,532 x g, 25°C, 

30 min). The supernatant was decanted and the percentage of precipitate was calculated 

as the ratio of precipitate weight divided by the initial soymilk weight, multiplied by 100. 

On each day of analysis, soymilk pH was measured.  

 

Statistical analysis 

To eliminate the effect of time variations, the experiment was run in 2 

replications, with each treatment combination represented in each replication. These 

balanced data were from a randomized complete block design. For each of the responses, 

the data were analyzed with a 5-way ANOVA blocking by replication. The procedure 

proc GLM in SAS 9.1 was used in the analysis. Fisher's LSD was calculated for the 

comparison between treatment combination means after the ANOVA null hypothesis of 

equal means was rejected using the ANOVA F-test. 

 

Results and Discussion 

Initial total bacterial count (TBC) and numbers of psychrotrophs (PSY) and 

Enterobacteriaceae (ENT) in untreated soymilk were 4.6, 3.7, and 3.7 log CFU ml-1, 

respectively. 
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Effects of processing and storage on total microbial count 

Log reductions in TBC of soymilk following HPP at 400, 500 or 600 MPa for 1 

and 5 min are shown in Figure 1. Increasing pressure level (400 to 600 MPa) and dwell 

time duration (1–5 min) had no significant effect on log reductions in TBC at 25 or 75°C 

(P>0.05). For all pressures, increasing the initial treatment temperature from 25 to 75°C 

significantly improved the TBC log reductions from an average of 2.5 to 4.5. Based on 

the TBC, treating at 75°C and 400 MPa (5 min) resulted in reducing initial bacterial 

numbers by 4.5 log cycles indicating that numbers of viable cell were inactivated to 

levels less than our detection limit (1.0 CFU ml-1). As expected, further increases in 

pressure to 500 and 600 MPa (1 and 5 min) gave similar results.  In fact, the initial 

populations of natural microflora in soymilk were not sufficiently large to evaluate the 

extent of log reductions that resulted from pressures applied at 500 or 600 MPa at 75°C. 

This observation might explain the result that pressure did not seem to significantly affect 

TBC reduction at 75°C. At 25°C, HPP treatment from 400 to 600 MPa resulted in 

variable reductions in TBC that were not significantly different (P>0.05). This variability 

may be attributed to differences in the numbers and types of natural microflora of 

soymilk. Microbial sensitivity to pressure has been reported as being greatly dependent 

on species (Gervilla et al., 2000; Lopez-Pedemonte et al., 2007; Shao et al., 2007). 

Overall, TBC reductions of soymilk under pressure were similar to those observed 

for raw bovine’s milk. Nabhan et al. (2004) reported a 4.5 log reduction in TBC of raw 

bovine milk after pressurization (600 MPa) at 55°C for 5 min. Our results were consistent 

with observations of Huppertz et al. (2006). Those investigators concluded that a 
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significant reduction (>4.0 log units) in bacterial numbers by HPP treatment of bovine 

milk would require pressurization at 600 MPa.  

In the present study, adiabatic heating during pressurization at 25°C increased 

soymilk temperature to 40, 45 and 48°C for 400, 500 and 600 MPa, respectively. For 

treatments at 75°C, the temperatures increased to 77, 84 and 85.5°C for 400, 500 and 600 

MPa, respectively. The high level of reduction in TBC observed in soymilk pressurized at 

75°C compared to 25°C is not surprising because the temperature combination reached 

after adiabatic heating and applied pressure is likely to exert more lethal effect on 

bacterial vegetative cells. Pressure-induced death of bacteria increases at higher 

temperatures and this effect is proportionately greater as temperature is increased above 

35°C (Kalchayanand et al., 1998).  

 Refrigerated control soymilk reached the spoilage detection level (7.0 log CFU 

ml-1) between 4 and 7 days (aerobic storage) and 7 and 11 days of anaerobic storage (data 

not shown). Soymilk pressurized at 400 MPa (25°C for 1 min) and stored aerobically 

reached 7.0 log CFU ml-1 between 14 and 18 days (Table 1). Extended shelf-lives of 18 

and 21 days were observed after treating at 500 MPa (1 or 5 min) or 600 MPa for 1 min. 

For 600 MPa-treated samples (25°C), increasing the dwell time to 5 min extended the 

time to 25 days for soymilk to reach the spoilage detection level under aerobic 

conditions. All pressurized samples stored anaerobically were below the spoilage level 

for up to 21 days when pressures of 400–600 MPa were applied to soymilk at 25°C. TBC 

in those samples reached 7.0 log CFU ml-1 or greater at 25 or 28 days. 

 Applying pressure (400–600 MPa) to soymilk at 75°C markedly extended shelf-

life irrespective of the aerobic or anaerobic storage or level of pressure. All samples had 
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viable counts of <7.0 log CFU ml-1 at 28 days; the TBC of 75°C-treated samples 

pressurized at 400, 500 and 600 MPa ranged from 6.14 to 6.81 log CFU ml-1 for aerobic 

storage and 5.29 to 6.07 log CFU ml-1 for anaerobic storage (Table 1).  

The rationale for evaluating the TBC in food products is based on the inverse 

relationship between the level of initial microbial counts and shelf-lives of food products.  

The ability of a food processing method to substantially reduce numbers of food-borne 

microorganisms is important for extending the microbial shelf-lives of foods. In the 

present study, increased pressure (500 or 600 MPa) drastically reduced TBC to extend the 

microbial shelf-life of refrigerated soymilk. Although increased dwell time (5 min) did 

not significantly further reduce TBC, it caused much slower increase in bacterial 

populations during storage. This result is likely due to a greater severity of sub-lethal 

injury among bacterial survivors when pressure treating for 5 min. Depending on the 

severity of sub-lethal injury, bacterial cells may take a long time to repair their lesions 

before they can start growing to form visible colonies (Ray and Foegeding, 1992). 

Compared to the shelf-life of aerobically stored non-treated soymilk (4–7 days) 

the refrigerated shelf-life of soymilk that was pressurized at 500 or 600 MPa (at 25°C) 

increased by about 14 days. Similarly, as a consequence of microbial inactivation, HPP 

(500 MPa, >55°C) of raw bovine milk increased the shelf-life to 21 days (Nabhan et al., 

2004). The extended shelf-life of the anaerobically stored soymilk is not surprising 

considering that growth of the typical aerobic spoilage bacteria in milk is inhibited by 

reduced oxygen conditions (Jay et al., 2005). The largest extension in shelf-life observed 

for 75°C-treated pressurized soymilk reflects the drastic decrease in initial TBC due to 

the lethal combined effect of pasteurization temperature (75°C) and high pressure. The 
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use of relatively high temperatures in combination with high pressure has been shown to 

increase microbial inactivation, which is proportionately greater as temperature increases 

above 35°C (Kalchayanand et al., 1998). Although there are intrinsic compositional 

differences between soymilk and bovine milk, the results of the present study indicate 

that very similar extensions in shelf-life may be achieved by HPP.  

 

Effects of processing and storage on psychrotrophic count 

Viable counts of PSY in pressurized soymilk during aerobic storage at 4°C are 

shown in Table 2. HPP treatment at 25°C and 400 MPa for 1 and 5 min reduced initial 

numbers of PSY by approximately 3.4 and 3.7 log CFU ml-1, respectively. When 

pressures were increased to 500 or 600 MPa, survivors were undetected (<1.0 CFU ml-1). 

Similarly, no survivors were detected on the day of treatment when HPP was performed 

at 75°C, regardless of pressure and dwell time. PSY in 500- or 600 MPa-treated samples 

(25°C) were not detected until day 4 (Table 2). Viable counts steadily increased and 

reached greater than 6.0 log CFU mL-1 at day 14 (400 MPa, 25°C) and day 18 (500 MPa, 

25 °C).   

At 25°C soymilk pressurized at 600 MPa had the lowest psychrotrophic counts 

throughout storage. By day 28, viable counts reached 5.03 log CFU ml-1 (600 MPa, 1 

min) and 3.32 log CFU ml-1 (600 MPa, 5 min). Numbers of PSY were beyond the 

detection limit up to days 4 and 7 in samples treated (400 MPa, 75°C) for 1 and 5 min, 

respectively. Also for the entire storage period, PSY were also not detected in samples 

treated with 500 or 600 MPa at 75°C and stored aerobically. A similar observation was 
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made for samples treated with 400, 500 or 600 MPa at 75°C and stored under anaerobic 

conditions. In contrast, numbers of PSY in untreated soymilk reached very high levels 

(9.0 log CFU ml-1) after 11 days of anaerobic storage (data not shown). 

Psychrotrophic bacteria are the main spoilage organisms of refrigerated food 

products. When numbers of PSY in milk reach 7 log CFU ml-1, bacterial production of 

proteases and lipases cause detectable off-odors and off-flavors that render the milk 

spoiled (Stepaniak, 1991). For commercial soymilks, growth of PSY was reported after 

14 days of refrigerated aerobic storage (Bai et al., 1998). For 20 h of refrigerated storage, 

no PSY were detected in aerobically packaged raw bovine milk treated at pressures >300 

MPa at 25°C for 10–60 min. The long dwell time and short refrigerated storage period 

may explain the lack of cell enumeration in that study (Lopez-Fandino et al., 1996). Our 

observation that no PSY could be detected in pressurized soymilk (400–600 MPa, 75°C) 

during refrigerated storage for 28 days indicated that the PSY population was highly 

sensitive to HPP with thermal treatment. While obtained with high-pressure 

homogenization, similar observations were reported by Smiddy et al. (2007) and 

Thiebaud et al. (2003) for raw bovine milk pressurized at 100–300 MPa at 25–55°C. 

Garcia-Risco et al. (1998) also demonstrated significant extension in microbial shelf-life 

of raw bovine milk following HPP (400 MPa, 30 min, 25°C). The pressure-treated milk 

had a PSY count of <7 log CFU ml-1 after storage (7°C) for 45 days. In contrast, the non-

treated milk had a PSY count of  >7 log CFU ml-1 after 15 days (Garcia-Risco et al., 

1998). 
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Effects of processing and storage on Enterobacteriaceae 

After 7 days of refrigerated anaerobic storage numbers of Enterobacteriaceae 

(ENT) in control soymilk reached approximately 8.0 log CFU ml-1. No ENT was detected 

in pressurized samples stored at 4°C for 28 days irrespective of pressure levels and 

temperature used in the present study (results not shown). Certain human enteric 

foodborne pathogens, such as E. coli, Salmonella and Yersinia enterocolitica, are 

members of the Enterobacteriaceae and are found in the intestinal tract of warm-blooded 

animals (Jay et al., 2005). The HPP effects on viability of Enterobacteriaceae in soymilk 

were evaluated in the present study because salmonellosis and yersiniosis in humans have 

been traced to soybeans and soy products (ICMSF, 1998). In a previous study involving 

HPP of bovine milk, E. coli was more pressure-sensitive than the indigenous microflora 

(Pandey et al., 2003). That finding supports our results indicating pressure-induced 

inactivation of Enterobacteriaceae and no growth of this family of bacteria in treated 

samples during 28 days of storage. Although initial viable numbers of ENT and PSY 

were similar in the present study, the survival of some PSY but no ENT suggests that a 

mixture of Gram-positive and Gram-negative bacteria were likely present in the PSY 

group. The elimination of Enterobacteriaceae by HPP conditions used in the present 

study indicates the potential of HPP for improving the microbial safety of soymilk. 

 

Sub-lethally injured microorganisms 

Populations of sub-lethally injured cells can be quantified by plate counts using a 

non-selective growth medium with and without added NaCl (Wu et al., 2008). Sub-

lethally injured cells are sensitive to salt concentrations due to the membrane damage 
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sustained during pressure treatment (Chilton et al., 2001). As expected, the bacteria in 

untreated soymilk exhibited no injury; approximately the same numbers of bacterial 

colonies were enumerated on both TSA and TSAN. On the day of treatment, soymilk 

pressurized at 400 MPa, 25°C for 1 min resulted in 62% sub-lethally injured survivors 

(Fig. 2). At that same temperature, application of 400 MPa (5 min) and 500 or 600 MPa 

(1 or 5 min) resulted in 100% injury to the surviving bacterial population. Treatment at 

75°C resulted in 100% injury regardless of pressure level and dwell time. These results 

are supported by studies indicating that with higher temperatures and pressures greater 

amounts of injury are induced (Lopez-Pedemonte et al., 2007; Bayındırlı et al., 2006).  

In most instances, no bacterial colonies were detected on TSA or TSAN when 

samples of soymilk were plated following pressurization (400–600 MPa) at 75°C. These 

results precluded calculation of percentage of sub-lethal injury. On day 4 or 7 during 

refrigerated storage of HPP-treated soymilk, emergence of bacterial colonies indicated 

that viable bacteria were present in samples that were subjected to pressure treatments at 

75°C (Table 1). It is likely that survivors were merely present in numbers <1.0 CFU ml-1. 

Alternatively, survivors might have endured severe sub-lethal injury and were unable to 

grow even on the non-selective TSA. Bozoglu et al. (2004) demonstrated two types of 

sub-lethal injury (I1 and I2) in bacteria after pressurization of UHT 1% low fat milk. 

Type-I2 sub-lethal injury is a severe injury and only after repair (I2 to I1) are the cells 

able to grow on non-selective but not on selective agar. Formation of colonies on both 

non-selective and selective agars occurs only when sub-lethally injured bacteria fully 

repair their injury and convert from I1 to active cells. The present study indicates that 

although bacterial survivors might not be detected in pressurized soymilk on the day of 
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treatment, cells with I2 type injury could potentially be present in this food product. In 

this regard, it is important to conduct microbial analyses over a period of time during 

which repair of type-I2 injury could permit detection of type-I1 injured cells or active 

cells to better predict the microbial shelf-life of soymilk.  

 

pH and particle stability 

 The natural pH of soymilk is approximately 6.7 and was adjusted to 7.0 before 

HPP treatments. A pH of 7.0 is recommended to maintain the viscosity of pressurized 

soymilk similar to the untreated soymilk (Lakshmanan et al., 2006). None of the 

treatment conditions changed the soymilk pH value on the day of treatment. During 

storage, the pH of the untreated soymilk decreased steadily to reach a value of 4.8 after 

28 days (Table 3). Characteristics of untreated soymilk are difficult to find in the 

literature as thermal treatment is traditionally applied during soymilk production. 

Decreases in pH of only 0.6–0.7 units were reported during storage of soymilk prepared 

using a thermal treatment of 116°C (Achouri et al., 2007). Regardless of the pressure and 

atmospheric storage conditions, a similar pH decrease was observed during storage of 

pressurized soymilks; the pH of pressurized soymilk after 28 days of storage was >6.4. 

Spoilage of foods is usually accompanied by chemical and physical changes in the 

matrix due to compounds produced during bacterial growth and acidification of the media 

is one of the consequences of this spoilage. The extent of acidification is related to many 

parameters including the matrix composition such as presence of fermentable sugars and 

proteins, and type and growth phase of microorganisms. Pascall et al. (2006) 

demonstrated that the pH of soymilk artificially inoculated with Bacillus subtilis 
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decreased by <1.0 unit in 60 days while the pH of soymilk with Bacillus 

stearothermophilus decreased from 6.2 to 4.4 after 24 h at 55°C. The presence of 

indigenous acid producing bacteria might explain the previously stated pH drop occurring 

in the control soymilk, while growth of bacterial survivors in the pressurized sample had 

a minor impact on the soymilk acidification. Liu and Chang (2008) attributed decreased 

soymilk pH prepared from soybeans stored under different conditions to the hydrolysis of 

neutral lipid to fatty acids and the oxidation of fatty acids. Factors influencing these 

changes might also have occurred in the samples analyzed in the present study. 

The physical stability of the soymilk was assessed by measuring the percentage of 

total sedimentable particles after low-speed centrifugation. On the day of treatment, the 

untreated sample had a stability index of 5.7%, which was comparable to the value 

obtained for soymilk homogenized with 80°C water (Cruz et al., 2007). The stability 

index of the untreated soymilk increased to 24.2% after 28 days of storage and confirmed 

the visual observation of the increased precipitation of particles throughout storage. 

Solubility of soy proteins is pH-dependent and acidification of soymilk probably 

contributed to the changes in the protein stability of untreated soymilk. Soy proteins 

solubility exhibits a U-shape pattern, with a lowest solubility at the isoelectric point of 

pH 4–5 (Jung et al., 2005). Overall, the pressurized soymilk showed an improved 

stability factor of at least 3.0 after 28 days of storage. 

Soymilk is a colloidal suspension containing approximately 5% protein and 10% 

solids (Lakshmanan et al., 2006), and suspended particle stability depends on many 

parameters including its composition and processing methods applied (Cruz et al., 2007; 

Nik et al., 2008; Ono et al., 1991). Large aggregates containing lipid, cell wall debris and 
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proteins were identified in unheated soymilk (Bodenstab et al., 2003; Nik et al., 2008) 

and increased soymilk stabilities of heated and heated/homogenized soymilk were related 

to rupture of these large aggregates. On the other hand, Cruz et al. (2007) explained 

increased stability of homogenized soymilk by formation of protein and fat globule 

aggregates.  

 

Conclusions 

Under the test conditions used in the present study, the shelf-life of refrigerated 

pressurized soymilk can be extended for at least 2 wk longer than that of untreated 

soymilk based on the spoilage level of 107 log CFU ml-1. In addition, the stability of 

pressurized soymilk can be maintained for 28 days at 4°C. HPP treatment is capable of 

improving shelf-life without negatively impacting the stability of the soymilk. Results of 

the present study indicate that HPP has the potential of being an alternative commercial 

process to traditional thermal treatments for extending the shelf-life of refrigerated 

soymilk. 
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Table 1.  

Total bacterial count (log CFU/ml) in pressurized soymilk during storage at 4°Ca. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall aerobic LSD was 1.62; aerobic LSD values for treatment at 25 and 75°C were 1.48 and 1.13, respectively. Overall 
anaerobic LSD was 2.58; anaerobic LSD values for treatment at 25 and 75°C were 2.14 and 1.74, respectively. 
aThe experiments were repeated twice and the data are expressed as mean log CFU/ml. 

Storage 
 

Temperature 
(°C) 

Pressure 
(MPa) 

Dwell  
Time 
 (min) 

Time (days) 
4 7 11 14 18 21 25 28 

Aerobic 

25 

400 
1 3.71 4.31 6.88 6.68 7.23 7.73 8.66 8.80 
5 3.89 3.94 6.33 6.79 6.91 8.12 8.49 8.93 

500 
1 3.35 4.71 6.51 6.09 6.62 8.03 8.15 8.16 
5 2.34 4.69 6.03 5.35 6.90 7.93 7.91 8.00 

600 
1 2.14 4.17 5.67 5.56 6.15 7.51 7.47 7.70 
5 2.21 4.67 5.69 4.87 5.59 6.80 7.37 7.59 

75 

400 
1 1.57 2.96 4.50 5.01 5.71 6.52 6.59 6.81 
5 0.58 1.91 4.06 4.62 5.15 6.02 6.20 6.40 

500 
1 0.42 2.58 4.28 4.13 5.66 6.24 6.33 6.50 
5 0.38 2.30 3.42 4.47 5.46 6.05 6.15 6.41 

600 
1 0.00 0.56 3.08 3.88 5.34 6.01 6.14 6.37 
5 0.00 0.46 3.09 3.56 5.21 5.70 5.82 6.14 

Anaerobic 

25 

400 
1 3.74 3.55 5.69 6.66 6.35 6.74 8.06 8.76 
5 2.95 3.39 4.19 4.85 5.58 6.50 7.31 8.02 

500 
1 2.79 3.68 5.72 6.29 5.84 6.94 6.67 7.82 
5 2.61 3.18 4.35 5.48 5.61 6.49 6.70 7.46 

600 
1 2.41 3.91 4.89 7.38 6.52 6.94 7.39 8.11 
5 2.30 3.07 4.60 6.92 5.90 6.21 7.22 7.95 

75 

400 
1 0.86 3.18 4.63 5.29 5.65 5.89 5.96 6.07 
5 0.53 3.05 2.66 4.68 5.25 5.44 5.61 5.69 

500 
1 0.74 2.86 4.20 4.40 5.36 5.39 5.55 5.59 
5 0.50 2.83 4.06 4.71 5.43 5.54 5.60 5.59 

600 
1 0.00 2.02 3.03 4.55 5.23 5.25 5.31 5.40 
5 0.00 1.78 2.60 4.16 5.03 5.13 5.21 5.29 
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Table 2.  

Psychrotroph count (log CFU/ml) in pressurized soymilk during aerobic storage at 4°Ca. 

The sign (−) indicates that the values were below the detection limit of 1 CFU/ml. Overall aerobic LSD was 2.36; aerobic LSD 

value for treatment at 25°C was 2.16. 
aThe experiments were repeated twice, and the data are expressed as mean log CFU/ml. 

Temperature 
(˚C)  

Pressure 
(MPa)  

Dwell  
Time 
(min)  

Time (days) 
0 4 7 11 14 18 21 25 28 

25 
 
 
 

400 
1 0.26 2.70 5.54 5.82 6.23 6.43 6.48 6.6 6.66 
5 0.26 2.10 2.03 5.27 6.27 6.32 6.35 6.4 6.38 

500 
1 – 1.39 2.10 4.81 5.57 6.21 6.21 6.22 5.79 
5 – 1.44 1.50 4.66 5.35 6.11 6.11 6.12 6.12 

600 
1 – 0.68 0.92 3.61 2.61 4.79 5.00 5.03 5.03 
5 – 0.61 1.04 2.11 2.82 2.99 3.22 3.40 3.32 

75 
  
 
 

400 
1 – – 0.74 1.75 2.39 2.83 2.83 2.95 3.22 
5 – – – 0.87 1.73 1.92 2.33 2.53 2.85 

500 
1 – – – – – – – – – 
5 – – – – – – – – – 

600 
  

1 – – – – – – – – – 
5 – – – – – – – – – 

62 



www.manaraa.com

 

Table 3.  

pH of pressurized soymilk during storage at 4°C under aerobic and anaerobic conditionsa. 

Storage 
Condition 

Temperature 
(°C) 

Pressure 
(MPa) 

Time (days) 
0 4 7 11 14 18 21 25 28 

            Control  0.1 6.7 6.5 6.0 6.4 5.8 5.5 5.3 5.1 4.8 
             
 

Aerobic 

 
25 

400 7.0 7.1 7.0 7.1 7.1 6.6 6.7 7.0 7.1 
500 6.9 7.0 7.1 6.9 7.0 6.5 6.8 6.6 6.4 
600 6.8 7.0 6.9 6.8 6.7 6.4 6.7 6.9 6.9 

 
75 

400 7.0 7.0 7.1 7.1 7.1 6.9 6.6 7.2 6.7 
500 6.9 7.0 7.0 7.2 7.1 7.1 6.8 7.1 6.8 
600 6.8 6.5 6.8 7.0 7.0 6.9 7.1 6.6 7.1 

             
 

Anaerobic 

 
25 

400 – 7.1 7.0 6.6 7.1 7.0 6.7 6.9 6.5 
500 – 7.1 7.1 6.5 7.1 7.0 6.8 6.8 6.5 
600 – 7.0 6.9 6.4 6.6 6.6 6.5 6.8 7.0 

 
75 

400 – 7.0 7.0 7.0 7.1 6.8 7.2 7.1 7.0 
500 – 7.0 6.9 7.1 7.0 7.1 7.3 7.0 7.0 
600 – 6.9 6.7 7.0 6.8 7.0 7.0 7.0 6.6 

Untreated soymilk was stored anaerobically. The sign (–) indicates that the pH was not determined as the day of treatment; there 
were no difference between anaerobic and aerobic samples. Overall aerobic LSD was 0.4; aerobic LSD value was 0.4 for treatment 
at 25 and 75°C. Overall anaerobic LSD was 0.44; anaerobic LSD values for treatment at 25 and 75°C were 0.5 and 0.4, 
respectively. 
aThe experiments were repeated twice, and the data are expressed as mean log CFU/ml. 
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Table 4.  

Stability of pressurized soymilk during storage at 4°C under aerobic and anaerobic conditionsa. 

Storage Temperature 
(°C) 

Pressure 
(MPa) 

Time (days) 
0 4 7 11 14 18 21 25 28 

Control  0.1 5.71 8.89 12.56 14.72 16.54 18.71 20.40 21.46 24.20 

 

 
Aerobic 

 
25 

400 0.73 2.57 2.94 2.64 4.75 4.81 5.03 6.63 7.17 
500 1.54 2.30 3.74 2.67 4.04 4.26 7.10 7.00 7.06 
600 4.29 3.56 3.82 4.37 5.47 5.37 7.47 5.94 6.74 

 
75 

400 2.95 1.55 2.27 3.24 2.71 2.97 3.89 4.96 4.61 
500 1.93 1.97 2.10 2.67 2.51 5.31 4.93 5.45 4.70 
600 3.16 1.64 2.00 3.69 3.92 7.21 4.73 3.22 3.74 

 
 

Anaerobic 

 
25 

400 – 1.59 2.52 1.97 2.78 4.47 5.71 3.33 2.49 
500 – 1.46 2.75 3.64 2.78 2.99 2.98 3.62 2.73 
600 – 2.82 3.00 3.09 2.90 3.79 3.63 5.03 3.94 

 
75 

400 – 2.49 3.40 3.86 3.64 4.42 3.94 4.38 5.63 
500 – 4.13 2.46 1.93 4.11 4.59 4.23 5.06 5.32 
600 – 2.81 4.14 4.12 4.15 5.56 5.48 5.62 5.52 

The sign (–) indicated that the stability was not determined as the day of treatment, there was no difference between anaerobic and 
aerobic samples. Overall aerobic LSD was 1.45;aerobic LSD values for treatment at 25 and 75°C were 1.63 and 1.26, respectively. 
Overall anaerobic LSD was1.38; anaerobic LSD values for treatment at 25 and 75°C were 1.34 and 1.46, respectively. 
aThe experiments were repeated twice and the data are expressed as mean log CFU/ml.
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Fig. 1. Log reduction in initial total bacterial count of soymilk following pressurization. 
The data are expressed as mean log CFU/ml. LSD value between 25 and 75°C was 2.83. 
LSD value between 400, 500 and 600 MPa was 2.56. The bars represent the standard 
deviation.  
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Fig. 2.Percentage of sub-lethally injured bacteria in soymilk following high-pressure 
treatment at 25°C. The bar represents one standard deviation. 
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ABSTRACT: The effects of added soy protein ingredients, methods of protein preservation, 

added moisture content, and second-stage cooking temperature on the texture and color of 

surimi gels made from Alaskan pollock were determined. Surimi samples were tested at 

various protein replacement levels (1, 3 and 5%), means of preservation (H2O2 and jet 

cooking), moisture contents (80, 81, 83 and 85%), and second-stage cooking temperatures 

(90 and 95°C). The type of soy protein used to extend surimi did not significantly affect gel 

texture and color. Preservation method of the soy protein ingredients significantly affected 

gel hardness at 95°C with jet-cooked soy protein producing harder gels. The level of protein 

replacement did not significantly affect surimi gel textural properties; fish protein could be 

replaced up to 5% with soy protein without adversely affecting texture. Gel hardness was 
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significantly increased by using 95°C second-stage heating temperature. Moisture level had 

no effect on surimi gel hardness or deformation but increased expressible water and 

decreased whiteness.  

 

Introduction 

Surimi is the Japanese term for mechanically deboned fish flesh that has been minced and 

mixed with cryoprotectants to extend frozen shelf-life (Nagai and others 2007). Surimi is 

commonly used as the base ingredient in the production of crab-flavored seafood (crab 

sticks). Seafood analogs are gelled protein products prepared by adding starch, egg white 

proteins, salt and vegetable oils to washed, minced fish muscle (Campo and others 2008). 

Surimi gel is a three-dimensional network and the texture of surimi after gelation 

primarily determines surimi gel quality (Lanier 1992). The hardness and strength of 

surimi gels are affected by added soy protein concentration and second-stage cooking 

temperature and duration as well as moisture content (Harper and others 1978, Camou 

and others 1989). Whiteness of surimi is also an important quality attribute (Choi and 

others 2000) with whiter gels being preferred.  

Alaskan pollock is one of the most widely used fish species to produce surimi 

(Yoon and others 2004). In the United States, the demand for Alaskan pollock has 

increased while the harvest has decreased (Reed and others 2008). Filler ingredients have 

been used to extend surimi to meet market demand. The ingredients added to extend 

surimi should be considered to be healthy to suit consumer preferences, while improving 

the texture of the surimi (Lee and others 1992). Protein additives are widely used to 

increase gel strength in surimi. Sugar, sorbitol and salt are commonly added as 



www.manaraa.com

69 
 

cryoprotectants to stabilize myofibrillar protein and maintain the functionality of the fish 

proteins (Matsumoto 1979, Park 1988, Lanier 1990). Starch, dried egg white and soy 

protein isolate (SPI) are preferred functional ingredients used by the surimi industry 

because of their abilities to form gels and retain water while being light in color (Choi 

and others 2000). SPI decreases proteolysis because it replaces fish protein so there is 

less myofibrillar protein to be degraded. The disintegration of myofibrillar proteins 

decreases gel-forming properties of surimi (An and others 1996) because it inhibits the 

development of a three-dimensional gel network (Morrissey and others 1993). 

The major soy storage proteins, glycinin (Gly) and β-conglycinin (Bcon), have 

unique functional properties. Gly produces hard and tough gels while Bcon increases 

elasticity of soy protein gels at high heating temperatures (Kang and others 2005). Soy 

protein lowers cholesterol and triglycerides levels in human blood serum (Kito and others 

1993, Aoyama and others 2001). Bcon has been associated more with these health 

benefits. 

SPI is conventionally produced by using hexane as the solvent to extract the lipid and 

flash desolventizing the meal to prevent heat denaturation of soy proteins during solvent 

removal. Crown Iron Works (St. Paul, MN, U.S.A.) and SafeSoy Technologies (Ellsworth, 

IA, U.S.A.) have developed a new oil-extraction process using CO2 as a displacement fluid to 

displace the oil from dehulled flaked soybeans when subjected to the high pressures of screw 

pressing. The process has been termed gas-supported screw pressing (GSSP) or HYPLEX. 

GSSP is not supercritical but rather liquid CO2 displaces the oil enhancing oil removal and 

the flashing of CO2 cools the press to substantially reduce protein denaturation that is 

common to alternative screw-pressing methods. Nazareth and others (2008) reported that the 
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functionality of the SPI prepared from GSSP meal (GSSP SPI) is similar to the functionality 

of SPI produced from commercial hexane-extracted, flash-desolventized white flakes (WF 

SPI).  

The most effective method of fractionating soy protein into Gly-rich and Bcon-rich 

fractions (SPF, soy protein fractions) is the method of Deak and Johnson (2005, 2007) and 

Deak and others (2006). Another process has been developed (Fig. 1) that removes the Bcon 

fraction while leaving the fiber and the glycinin in one fraction (Gly+Fiber-rich) (Deak and 

Johnson 2005).  

The manufacture of soy protein ingredients involves producing aqueous solutions of 

protein, which are prone to microbial growth. Industry typically jet cooks SPI by direct steam 

injection and holding at 100-110°C for 10-20 sec before spray drying. The high temperatures 

used in jet cooking denature the protein but the high-shear tends to preserve many native 

functional properties by producing very small protein aggregates. Alternatively, H2O2 can be 

used as an antimicrobial agent and reduce protein denaturation (Deak and others 2007). 

It is unknown whether GSSP soy protein ingredients (SPI or fractionated soy protein) 

can be advantageously used to extend surimi and whether these soy protein ingredients 

enable increasing the water content above the normal industry level. The objective of the 

present study was to determine the effects of GSSP SPI and fractionated soy protein 

ingredients, method of preservation, second-stage cooking temperature and moisture content 

on the physical properties of surimi produced from Alaskan pollock. 
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Materials and Methods 

Chemicals 

 Sucrose, sodium chloride and sorbitol were obtained from Fisher Scientific 

(Pittsburgh, PA, U.S.A.). Spray-dried egg white was purchased from MP Biomedicals 

(Solon, OH, U.S.A.). Sodium tripolyphosphate was supplied by Acros Organics (Morris 

Plains, NJ, U.S.A.).Cornstarch was obtained from Cerestar (Hammond, IN, U.S.A.).  

 

Soy protein preparation 

SPI and soy protein fractions (SPF) glycinin-rich (Gly-rich), β-conglycinin-rich 

(Bcon-rich) and the glycinin- and fiber-rich (Gly+Fiber-rich) were produced by using the 

procedures of Deak and Johnson (2007) (Fig. 1) using GSSP soy flour. SPI was produced 

by alkali extraction and precipitation to remove the insoluble fiber and the adjusting the 

pH to 4.5 to precipitate the SPI. The Gly-rich and Bcon-rich fractions were produced by 

using a three-step process. The fiber was removed as in preparing SPI and removed and 

then adding NaHSO3 and CaCl2. The pH was adjusted to 6.4 to precipitate a Gly-rich 

fraction. The supernatant was adjusted to pH 4.8 to precipitate a Bcon-rich fraction. 

Preparation of the Gly+Fiber-rich fraction involved extracting a Bcon-rich fraction at pH 

6.8 leaving behind a Gly-rich and fiber-rich fraction. All fractions were neutralized and 

either jet cooked at 105°C for 17 sec or treated with 0.1% hydrogen peroxide (H2O2) to 

reduce microbial load and assure food safety. All samples were spray-dried and stored in 

airtight containers at 4°C until used. 
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Protein content and profile analysis 

Nitrogen contents were measured using the macro-Kjeldahl method (AOAC 

1980). Protein content was calculated at N x 6.25. 

Urea-sodium-dodecylsulfate polyacrylamide gel electrophoresis (urea-SDS-

PAGE) was performed by using the methods of Rickert and others (2004) to determine 

the protein composition profiles of all fractions. Electrophoretic bands were identified by 

using a pre-stained SDS-PAGE low-range molecular-weight standard (Bio-Rad 

Laboratories, Hercules, CA, U.S.A.). Gly and Bcon subunit bands were confirmed by 

using purified standards produced according to methods of O’Keefe and others (1991). 

Densitometry was carried out by using the Kodak 1D Image Analysis version 3.5 

(Kodak, Rochester, NY, U.S.A.) on images scanned with a Biotech image scanner 

(Amersham Pharmacia, Piscataway, NJ, U.S.A.). SDS-PAGE results were calculated as 

% composition: total storage protein in a given fraction = [(sum of storage protein 

subunit bands)/(sum of all bands)] x 100, fraction purity/composition = [(sum of subunit 

bands)/(sum of storage protein bands)] and subunit composition of a specific protein = 

[(subunit band)/(sum of subunits for the specific protein)]. All measurements were 

replicated at least four times and means reported. 

 

Gelling properties of soy protein ingredients 

 To determine gelling properties of the soy proteins alone, the soy protein 

ingredients were brought to room temperature and then mixed with deionized water at 

room temperature at a 1:5 protein-to-water ratio. The mixture was stirred until the protein 

was completely dissolved (~1 h). The mixture was poured into stainless-steel cylinders 
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(25.4 mm inner diameter x 25.4 mm length) and sealed with lids on both ends and 

secured with a clamp (Fig. 2). The gels were set by heating them in a mineral oil bath at 

40°C for 30 min. The gels underwent irreversible gelling during second-stage 

cooking(gel-setting) at 95°C for 20 min. The heating curve of the control surimi gel is 

shown in Fig. 3. The gels were cooled in an ice water bath for 3 min and stored in the 

refrigerator for 16 h.  

 

Surimi preparation 

Frozen Alaska pollock fillets were obtained from a local supermarket. Fillets were 

partially thawed and minced to uniformity in a KitchenAid mixer with a food grinder 

attachment (St. Joseph, MI, U.S.A.). Surimi was prepared according to the method of 

Benjakul and others (2004) with modifications. The minced fish was washed with cold 

water (5°C) at 1:3 (w/w) minced fish-to-water ratio. The mixture was gently stirred for 3 

min and centrifuged (Sorvall RC 5B Plus, Thermo Scientific, Ashville, NC, U.S.A.) at 

8000xg and 4°C for 30 min. Washing and centrifuging were repeated twice (once with 

deionized water and then with 0.2% NaCl in deionized water to aid dewatering). After the 

second centrifugation, the minced fish was squeezed between two layers of cheesecloth 

to remove excess water. The washed and dewatered mince was mixed with 4% sucrose, 

4% sorbitol and 0.3% sodium tripolyphosphate, and kept frozen until used. 

 

Surimi gel with added soy protein 

The surimi prepared as above was thawed overnight in the refrigerator. Then, 1% 

egg white, 4% starch and 2% NaCl based on surimi weight were mixed with the SPI or 
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SPF (0, 1, 3 or 5% w/w minced fish). The mixture was added to the surimi (75, 73, 71 or 

68% w/w) and mixed to a thick paste. The moisture level was adjusted to 80% with cold 

deionized water and 1% vegetable oil was mixed into the paste. The pastes were placed in 

the stainless-steel cylinders and cooked in a mineral oil bath for 20 min at 90 or 95°C 

after setting for 30 min at 40°C. After the two-step cooking procedure, the gels were 

cooled in an ice water bath for 3 min. The cooled gels were placed in airtight plastic 

containers and stored in the refrigerator for 16 h.  

 

Surimi gels with increased moisture contents 

The surimi prepared as above was thawed overnight in a refrigerator. Then, 1% 

egg white, 4% starch and 2% sodium chloride were mixed together with the SPI or SPFs 

(5% w/w). The mixture was added to the surimi (68% w/w) and mixed to a thick paste. 

The moisture level was adjusted to 80, 81, 83 or 85% with cold deionized water and 1% 

vegetable oil was mixed into the paste. The paste was placed in the stainless-steel 

cylinders. The pastes were cooked in a mineral oil bath for 20 min at 95°C after setting 

for 30 min at 40°C. The gels were cooled in an ice water bath for 3 min. The cooled gels 

were placed in airtight plastic containers and stored in the refrigerator for 16 h.  

 

Texture profile analysis 

Texture profile analysis (TPA) of the gels was performed with a TA-XT2i 

Texture Analyzer (Stable Micro Systems, Surrey, UK) and a 5-kg load cell. The gels 

were equilibrated and analyzed at room temperature. Breaking force (gel hardness) and 
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deformation (elasticity/deformability) were measured by using a cylindrical plunger (25.4 

mm diameter) with a two-bite compression speed of 1.2 mm/min and 75% compression. 

 

Color analysis 

Color analysis was conducted by using a HunterLab Scan XE (Reston, VA, 

U.S.A.) and analyzed with Universal Software V4.10. Samples from each treatment were 

subjected to Lab and whiteness measurements. White and black standard plates were 

used for calibration. Whiteness was calculated by using the following equation (Park 

1995). 

Whiteness = 100-[(100-L) 2 + a2 + b2]1/2 

 

Expressible water 

Expressible water was measured according to the method of Ng (1987). 

Cylindrical gel samples were sliced to 5.0 mm thickness, weighed and placed between 

five pieces of Whatman No. 1 filter paper; three pieces on the bottom and two pieces on 

the top. The standard weight (5 kg) was placed on the top of the sample for 2.0 min. The 

weight was removed and the sample weighed again (Y). The expressible water was 

reported as the percentage of lost water weight relative to the original sample weight (X).  

Expressible moisture (%) = [(X-Y)/X] ×100 

Statistical analysis 

In the first experiment to evaluate the gelling properties for soy proteins alone, the 

treatments were replicated three times. In the second experiment, the experimental design 

was a 5 x 3 x 2 x 2 factorial design with 5 soy protein ingredients, 3 levels, 2 protein 
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preservation methods, and 2 setting temperatures. Three replicates were made for each 

treatment. In the third experiment, all analyses were run in duplicate for triplicate surimi 

preparations (n = 2 x 3). Results are reported as mean values of six determinations ± 

standard deviation (SD). Data were analyzed by Analysis of Variance. Differences 

among the treatment means were determined by using the least significant difference 

(LSD) test with significance defined at P<0.05. 

 

Results and Discussion 

Compositional properties of soy protein ingredients 

Protein contents and profiles of the GSSP soy protein ingredients are shown in 

Table 1. The SPI prepared from GSSP meal contained only 85% protein (db), which is 

less than the minimum industry protein level of 90% for SPI. GSSP meal typically has a 

protein dispersibility index of about 70 compared to 80 for WF. The slightly less 

extractable protein of GSSP meal resulted in lower protein contents in SPI made from 

GSSP meal. The SPI prepared from GSSP meal had 1:1 Bcon-to-Gly ratio as is typical of 

SPI prepared from WF. The Bcon-rich fraction contained 80% protein and 67% Bcon, 

and was enriched to 2.4:1 Bcon-to-Gly ratio, where as the Gly-rich fraction contained 

92% protein and 78% Gly, and was enriched to 0.1:1Bcon-to-Glyratio. The Gly+Fiber-

rich fraction contained 65.4% protein and 54% Gly, and had 0.4:1 Bcon-to-Gly ratio; the 

fiber greatly reduced the protein content making it more like a protein concentrate (min 

65% protein) than an isolate. Therefore, the three fractionated protein ingredients were 

substantially enriched in the targeted proteins.  
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Gelling properties of fractionated soy protein ingredients 

Each soy protein fraction had substantially different textures as indicated by gel 

hardness values (Fig. 4). The gels prepared from the Bcon-rich fraction were significantly 

softer than the gels prepared from SPI or the Gly-rich fraction. H2O2-treated and jet-

cooked proteins produced gels that were not significantly different from each other. The 

gels prepared from jet-cooked SPI and jet-cooked Gly-rich fraction were also not 

significantly different from each other. Gels prepared from theH2O2-treated Gly-rich 

fraction were significantly harder than all other gels. Gels prepared fromH2O2-treated 

Gly-rich fraction were>100%harder than its jet-cooked counterpart and exhibited the look 

and feel of a hardboiled egg (Fig. 5). This observation suggests that native Gly, but not 

denatured Gly, gives harder gels. 

 

Effects of type of soy protein ingredient on surimi quality 

In general, surimi gels with added soy protein were as hard or harder than the 

control (without added soy protein); adding soy protein made the surimi gels more firm, 

except for the Gly+Fiber-rich fraction(Tables 2 and 3). Probably the fiber interfered with 

protein strands coming together to form a gel. In general, the type of soy protein added to 

the surimi gels did not have a significant impact on the gel hardness (Table 4). The H2O2-

treated Gly-rich fraction did not produce harder surimi gels than the Bcon-rich fractions 

as the gelling properties of the 20% soy protein gels suggested. Therefore, fractionating 

soy protein did not produce fractions with superior hardness in surimi.  

Deformation is the distance in compression that is needed to break a gel. 

Increased distance indicates more flexibility and more flexible gels are considered by the 
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surimi industry to be a good quality attribute. Protein type did not significantly affect the 

deformation of soy added surimi gels. All protein types were statistically similar (Table 

5) to each other as well as the controls at 90 (Table 2) and 95°C (Table 3).Therefore, 

fractionating soy protein did not produce fractions with superior deformation in surimi. 

Low expressible water is a desirable attribute in surimi because the product has 

better water-holding capacity and does not easily loose water. Soy protein type did not 

significantly affect expressible water: all soy protein products gave similar results (Tables 

2 and 3). With the addition of soy protein, expressible water was not significantly 

different from the control (Table 6). At 95°C, the H2O2-treated Bcon-rich fraction 

significantly improved the expressible water compared to controls at 90 and 95°C as well 

as all other protein types.  

Consumers expect white-colored seafood analogs and, therefore, a high whiteness 

value is desirable in surimi gels. Type of protein did not significantly affect surimi gel 

whiteness compared to the control (Fig. 5). Therefore, fractionated soy proteins do not 

offer any advantages to surimi color. 

 

Effects of soy protein level on surimi quality 

The level of protein replacement did not significantly affect hardness (Table 4) 

and no consistent trends for level of soy protein addition on hardness were observed 

(Tables 2 and 3). Higher replacement of fish protein with soy protein did not always have 

the same effects on surimi gel hardness. Our hypothesis that H2O2-treated Gly-rich 

fraction would increase hardness as more fish was replaced proved incorrect as did our 

hypothesis that increased level of Bcon-rich fraction would decrease hardness. The gels 
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prepared with 5% H2O2-treated Gly-rich fraction were softer than the controls without 

added soy protein. Our results, however, are consistent with those of Chang-Lee and 

others (1990) who reported that adding1% SPI had no significant effect on the gel 

strength of whiting surimi. Yang and others (1992) reported that replacing11% Alaskan 

pollock protein with SPI produced a stronger gel than surimi alone after setting at 55°C 

for 30 min. 

Protein level had a significant impact on surimi gel deformation (Tables 2, 3 and 

5). The effect of replacement level was temperature dependent. Gels of soy protein 

extended surimi cooked at 90°C did not have significantly different deformation values 

compared to the control. Jet-cooked Gly and H2O2-treated Bcon at 5% protein 

replacement and cooked at 95°C were the only gels significantly more flexible than the 

control gels. H2O2-treated SPI at 1% replacement and cooked at 95°C produced gels that 

were significantly more rigid than the control gel; but, higher replacement levels were not 

significantly different from the control. These findings are consistent with those of Luo et 

al. (2004) who reported that the breaking force and distance were significantly increased 

at 10% protein replacement with SPI prepared from WFs in Alaskan pollock surimi. 

Protein level did significantly affect expressible water of soy protein extended 

surimi gels (Table 6). H2O2-Bcon at 1, 3 and 5% replacement, however, significantly 

reduced expressible water compared to the control and all other surimi gels. 

Level of soy protein replacing fish protein significantly affected whiteness of 

surimi gels (Table 7). The effect of protein level was dependent on the temperature at 

which the gels were cooked. Replacing fish protein with 3 and 5% soy protein 

significantly affected the whiteness of the surimi gels when cooked at 95°C (Table 3). 
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These gels were significantly less white than gels cooked at 90°C (Table 2). Surimi 

extended with 3 and 5% jet-cooked Gly+Fiber-rich fraction and cooked at 90°C were 

significantly whiter than surimi gels with 5% jet-cooked SPI and cooked at 95°C. Colors 

were significantly whiter at lower replacement levels (0 and 1%). As more fish protein 

was replaced with soy protein, whiteness decreased. Surimi gels with 3% jet-cooked 

Bcon-rich fraction and cooked at 90°C at 3% were significantly whiter than surimi gels 

with 5% H2O2-treated Bcon and jet-cooked SPI when the gels were cooked at 95°C. Our 

observations are consistent with those of Luo et al. (2004) who observed that Alaskan 

pollock surimi at 10% replacement with SPI prepared from WFs were significantly 

darker than the control (without added SPI). 

 

Effects of soy protein preservation method on surimi quality 

The method used to preserve soy protein significantly affected surimi hardness 

when the gels were cooked at 95°C (Table 4) but not at 90°C (Table 2). At 95°C second-

stage cooking temperature, jet-cooked soy proteins produced gels that were significantly 

harder than those produced with H2O2-treated protein ingredients (Table 3). The jet-

cooked soy protein ingredients were fully denatured but the H2O2-treated soy proteins 

were not (Nazareth 2009). 

Preservation method did not significantly affect expressible water (Table 6) of the 

surimi gels cooked at 90°C (Table 2) and 95°C (Table 3). Protein denaturing that 

occurred with jet cooking did not affect expressible water of the soy protein-added surimi 

gels. 
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The method used to preserve soy protein did not significantly affect the whiteness 

of the surimi (Tables 2, 3 and 7, Figure 5). These results were surprising and rejected our 

hypothesizes that jet cooking would have caused Maillard reaction browning whereas 

hydrogen peroxide would have bleaching of Maillard reaction products.   

 

Effects of second-stage cooking temperature on surimi quality 

Second-stage cooking temperature significantly affected hardness (Table 4). 

Cooking at 95°C (Table 3) produced harder gels than cooking at 90°C (Table 2).Higher 

second-stage cooking temperatures denature more protein and, thereby, increase 

hardness. We hypothesized that higher second-stage cooking temperatures would be 

required when using Gly in surimi because Gly denatures at 93°C whereas Bcon 

denatures at 75°C, but this hypothesis was rejected. Surimi gels prepared with 3% jet-

cooked and H2O2-treated Gly and cooked at 95°C were significantly harder than the 

control and the Gly+Fiber-rich fraction cooked at 90°C. Surimi gels prepared with 1% 

jet-cooked SPI and 5% jet-cooked and H2O2-treated Bcon and cooked at 95°C were 

significantly harder than the control cooked at 90°C. 

Second-stage cooking temperature did not significantly affect deformation (Table 

5). At 90°C second-stage cooking, all surimi gels were as flexible as the control (Table 2) 

while most of the surimi gels cooked at 95°C were as flexible as the control (Table 3). 

Second-stage cooking temperature significantly affected expressible water (Table 

6). Cooking surimi at 90°C produced more expressible water than surimi cooked at 95°C. 

Higher second-stage cooking temperatures may cause more extensive protein 

denaturation; denatured soy protein may bind more water than undenatured soy protein. 
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Whiteness was significantly affected by second-stage cooking temperature (Table 

7 and Figure 5). The surimi gels cooked at 90°C (Table 2) were significantly whiter than 

the gels cooked at 95°C (Table 3). Surimi gels made with 5% soy protein and cooked at 

95°C were significantly less white than all other treatments. Park (1995) reported that 

increasing second-stage cooking temperature increased whiteness. At 95°C, all samples 

were as white as or whiter than the control. Adding more soy protein reduced whiteness 

especially when cooking at 90°C. 

 

Effects of water level on surimi quality. 

Esturk et al. (2006) and Reppond et al. (1997) reported that increasing moisture 

content decreased the strain and shear stress of surimi gels. The hardness values for 

Alaskan pollock surimi gels with different moisture levels are shown in Table 8. 

Increased moisture content did not significantly affect surimi gel hardness (Table 9) 

compared to the control (81% moisture). All surimi gels extended with soy protein 

products were not statistically different from the control. Therefore, soy protein 

(including fractionated soy protein) can be added to surimi without adversely affecting 

texture. The hardness of gels prepared with SPI prepared from GSSP meal and white 

flakes, however, were significantly different from each other (Table 4). Surimi gels with 

83% moisture content were less hard than the control with no added soy protein at 81% 

moisture content. At 85% moisture content the surimi gels were less hard than the control 

at 81% moisture content. 

Increasing the moisture contents of all soy protein-extended gels did not 

significantly affect surimi gel deformation. These findings are contrary to the report of 
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Hsu et al. (2002) that increasing moisture content in surimi gels decreased deformation. It 

is possible that the partial protein denaturation caused by GSSP was responsible for the 

soy proteins maintaining flexibility in surimi gels with increasing moisture content. 

Moisture content significantly affected expressible water of surimi gels (Tables 8 

and 9). Increasing the moisture content significantly increased expressible water in 

almost all gels. The control at 80% moisture and soy protein-extended gels at 81% 

moisture was not significantly different. Surimi gels with 83 and 85% moisture content 

had significantly more expressible water compared to the control but were not different 

from gels with 81% moisture content. The surimi gels prepared with Gly-rich, Bcon-rich 

and SPI prepared from white flakes had significantly less expressible water than the 

control. Replacing fish protein with up to 5% GSSP SPI did not cause significant changes 

to the expressible water of surimi gels. Our observations do not agree with the 

observations of others that expressible water is highly dependent on cooking temperature 

but not on moisture content of surimi gels (Park et al., 2008).  

Moisture content significantly affected the whiteness of surimi gels (Table 9). The 

effect of moisture level was dependent on the protein type added to the surimi gels. The 

control gels were significantly whiter than all surimi gels extended with soy protein, 

regardless of moisture content, and became whiter as moisture content increased. As 

moisture content increased from 80 to 85%, the whiteness of surimi gels extended with 

soy protein significantly decreased (Table 8). SPI prepared from white flakes and GSSP 

meal were the least white of all surimi gels extended with soy protein. The jet-cooked 

Gly-rich fraction was the whitest of all surimi gels extended with soy protein. Our 

findings differ from those of others (Reppond and others 1997, Park 1995, Yoon and 
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others 1997) who reported that increasing the moisture content increased the whiteness of 

surimi. 

 

Conclusions 

Adding soy protein increases surimi gel hardness and can extend surimi up to 5% 

replacement without adversely affecting gel hardness, deformation, expressible water or 

whiteness. The type of protein added did not affect texture or color; therefore, there is no 

advantage of fractionated soy protein over SPI. The Gly+Fiber-rich fraction produced 

gels as hard as or less hard than the control and, therefore, it would not be advantageous 

to use this fraction to extend surimi. When cooked at 95°C higher replacement levels 

produced greater flexibility in the surimi gels, which is advantageous. Whiteness was 

decreased with the addition of soy protein ingredients. At 95°C second-stage cooking 

temperature, jet-cooked soy protein produced significantly harder gels than H2O2-treated 

soy protein. Second-stage cooking temperature of 95°C produced harder gels with less 

expressible water and less white color compared to gels cooked at 90°C. Moisture level 

did not affect hardness or deformation; therefore, added water can be used to extend 

surimi without adversely affecting texture. At 5% replacement, soy protein-extended 

surimi gels had similar expressible water properties to the control at 80% moisture 

content. The optimum texture and color of surimi gels were obtained by replacing fish 

protein with 5% GSSP soy protein, except for the Gly+Fiber-rich fraction at 85% 

moisture content. 
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Table 1 – Compositional properties of soy protein ingredients prepared from GSSP 
meal. 
 

Soy Protein 
Ingredient 

Protein 
Content 
(% db) 

ββββ-Conglycinin 
(% total 
protein) 

Glycinin 
(% total 
protein) 

Others 
(% total 
protein) 

Bcon:Gly 
ratio 

SPI 85.0 47 43 10 1.1:1 

Bcon-rich 80.3 67 28 5 2.4:1 

Gly-rich 91.9 9 78 13 0.1:1 

Gly+Fiber-
rich 

65.4 21 54 25 0.4:1 
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Property Control LSD
0% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5%

Hardness 338 590 612 799 631 532 513 754 399 434 377 635 554 314 424 333 693 633 415 647 494 636 138
Deform 6.5 6.9 6.3 6.3 5.9 5.7 6.6 6.8 7.1 6.8 6.8 6.4 5.6 6.8 7.27.2 6.0 7.2 6.5 5.9 5.9 6.2 0.9

Ex Water 43.5 30.5 30.9 27.8 38.6 27.4 30.6 30.9 39.4 39.0 38.5 33.9 31.9 36.8 36.2 42.0 29.1 29.2 33.0 29.9 37.0 29.3 3.4
Whiteness 38.4 41.2 40.2 38.8 42.1 41.9 39.1 38.6 39.5 40.9 45.6 40.2 38.4 44.7 41.9 42.0 41.0 42.2 40.3 39.5 40.4 35.3 2.8

SPI Glycinin-rich Glycinin + Fiber β-Conglycinin-rich
          -treated Jet-cooked           -treatedJet-cooked           -treated Jet-cooked           -treated

Table 2 – Textures and colors of surimi gels as affected by extending with soy protein ingredients when cooked at 90°C  

 
aForce (g) required to break gel, bDistance (mm) travelled when gel breaks, cWater (%) pressed from gels, 
dWhiteness=100-[(100-L) 2 + a2 + b2]1/2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

H2O2 H2O2 H2O2 H2O2 

89 

a 

b 

c 

d 
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Property Control LSD
0% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5%

Hardness 728 945 816 869 873 702 696 742 977 966 748 667 561 652 642 529 711 762 1026 902 674 1076 138
Deform 6.7 6.0 6.6 6.9 5.5 5.9 6.8 6.1 7.4 7.5 5.9 6.5 9.0 7.0 6.8 7.1 7.3 7.5 8.1 6.5 6.3 6.8 0.9
Ex water 27.6 24.8 25.7 24.3 26.2 23.2 26.2 25.5 24.1 24.9 25.8 25.6 28.0 28.9 24.1 27.5 25.6 26.5 23.6 22.4 23.1 20.2 3.4

Whiteness 41.0 36.7 36.9 30.9 35.7 36.3 32.3 39.8 37.8 35.6 40.5 36.7 36.3 40.7 39.7 38.4 40.5 35.5 34.0 39.7 34.7 31.5 2.8

           -treated Jet-cooked            -treatedJet-cooked            -treated Jet-cooked            -treated
SPI Glycinin Glycinin + Fiber β-Conglycinin

Table 3 – Textures and colors of surimi gels as affected by extending with soy protein ingredients when cooked95°C 
 

 
 
    

 
 
 
aForce (g) required to break gel, bDistance (mm) travelled when gel breaks, cWater (%) pressed from gels, 
dWhiteness=100-[(100-L) 2 + a2 + b2]1/2 
 
 
 
 

 

 

 

 

 

H2O2 H2O2 H2O2 H2O2 

90 

a 

b 

c 

d 
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Table 4 – ANOVA of the hardness of surimi gels as affected by extending with soy 
protein ingredients 
 

Source DF Type III SS Mean 
Square 

F 
Value 

Pr > F 

repa 2 18428.304 9214.152 0.22 0.8010 
tempb 1 1051826.178 1051826.178 25.42 <.0001 
prtc 2 110208.904 55104.452 1.33 0.2707 

temp*prt 2 225584.761 112792.381 2.73 0.0725 
preservationd 1 124766.413 124766.413 3.01 0.0869 

temp*preservation 1 167371.320 167371.320 4.04 0.0482 
prt*preservation 2 133788.175 66894.088 1.62 0.2059 

temp*prt*preservatio 2 133587.420 66793.710 1.61 0.2064 
levele 2 76675.058 38337.529 0.93 0.4008 

temp*level 2 78948.661 39474.331 0.95 0.3902 
prt*level 4 122258.693 30564.673 0.74 0.5688 

temp*prt*level 4 259652.438 64913.109 1.57 0.1923 
preservation*level 2 8680.643 4340.321 0.10 0.9006 

temp*preservat*level 2 165005.481 82502.740 1.99 0.1439 
prt*preservati*level 4 197237.756 49309.439 1.19 0.3222 

temp*prt*prese*level 4 363184.275 90796.069 2.19 0.0785 
aReplicate,bCooking temperature,cProtein type,dPreservation method,eLevel of  
protein replacement 
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Table 5 – ANOVA of the deformation of surimi gels as affected by extending with 
soy protein ingredients 
 

Source DF Type III SS Mean 
Square 

F 
Value 

Pr > F 

repa 2 0.92249725 0.46124863 0.42 0.6580 
tempb 1 5.96782552 5.96782552 5.45 0.0225 
prtc 2 5.93932889 2.96966445 2.71 0.0735 

temp*prt 2 2.24712293 1.12356147 1.03 0.3639 
preservationd 1 6.71280139 6.71280139 6.13 0.0157 

temp*preservation 1 0.28198002 0.28198002 0.26 0.6135 
prt*preservation 2 1.78739000 0.89369500 0.82 0.4464 

temp*prt*preservatio 2 1.66739754 0.83369877 0.76 0.4710 
levele 2 7.64398446 3.82199223 3.49 0.0359 

temp*level 2 10.51182339 5.25591169 4.80 0.0111 
prt*level 4 0.86263315 0.21565829 0.20 0.9392 

temp*prt*level 4 6.97660214 1.74415053 1.59 0.1860 
preservation*level 2 2.75353580 1.37676790 1.26 0.2909 

temp*preservat*level 2 0.70682939 0.35341469 0.32 0.7253 
prt*preservati*level 4 1.42459079 0.35614770 0.33 0.8602 

temp*prt*prese*level 4 3.97044728 0.99261182 0.91 0.4652 
aReplicate,bCooking temperature,cProtein type,dPreservation method,eLevel of  
protein replacement 
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Table 6 – ANOVA of the expressible water of surimi gels as affected by extending 
with soy protein ingredients 
 

Source DF Type III SS Mean 
Square 

F 
Value 

Pr > F 

repa 2 653.859346 326.929673 5.63 0.0054 
tempb 1 1198.521959 1198.521959 20.64 <.0001 
prtc 2 220.651907 110.325953 1.90 0.1572 

temp*prt 2 293.128222 146.564111 2.52 0.0874 
preservationd 1 0.372653 0.372653 0.01 0.9364 

temp*preservation 1 10.302053 10.302053 0.18 0.6749 
prt*preservation 2 23.407663 11.703831 0.20 0.8179 

temp*prt*preservatio 2 132.298341 66.149170 1.14 0.3259 
levele 2 12.814134 6.407067 0.11 0.8957 

temp*level 2 28.369802 14.184901 0.24 0.7839 
prt*level 4 106.388358 26.597089 0.46 0.7662 

temp*prt*level 4 15.932700 3.983175 0.07 0.9912 
preservation*level 2 69.679785 34.839893 0.60 0.5516 

temp*preservat*level 2 31.787201 15.893601 0.27 0.7613 
prt*preservati*level 4 141.123320 35.280830 0.61 0.6585 

temp*prt*prese*level 4 157.190081 39.297520 0.68 0.6103 
aReplicate,bCooking temperature,cProtein type,dPreservation method,eLevel of  
protein replacement 
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Table 7 – ANOVA of the whiteness of surimi gels as affected by extending with soy 
protein ingredients 
 

Source DF Type III SS Mean 
Square 

F 
Value 

Pr > F 

repa 2 78.4208574 39.2104287 3.72 0.0292 
tempb 1 351.8486502 351.8486502 33.35 <.0001 
prtc 2 41.7883366 20.8941683 1.98 0.1456 

temp*prt 2 15.3651977 7.6825988 0.73 0.4864 
preservationd 1 1.0237521 1.0237521 0.10 0.7563 

temp*preservation 1 0.9756502 0.9756502 0.09 0.7619 
prt*preservation 2 48.8865181 24.4432590 2.32 0.1061 

temp*prt*preservatio 2 18.2805421 9.1402711 0.87 0.4249 
levele 2 278.7836310 139.3918155 13.21 <.0001 

temp*level 2 85.4613310 42.7306655 4.05 0.0216 
prt*level 4 35.4630093 8.8657523 0.84 0.5042 

temp*prt*level 4 39.9787565 9.9946891 0.95 0.4419 
preservation*level 2 23.2856264 11.6428132 1.10 0.3374 

temp*preservat*level 2 8.4177227 4.2088613 0.40 0.6725 
prt*preservati*level 4 36.6159389 9.1539847 0.87 0.4878 

temp*prt*prese*level 4 43.6306287 10.9076572 1.03 0.3959 
aReplicate,bCooking temperature,cProtein type,dPreservation method,eLevel of  
protein replacement 
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Table 8 – Texture and color properties of surimi gels as affected by moisture content when cooked at 95°C 

Property 80% 81% 83% 85% 80% 81% 83% 85% 80% 81% 83% 85% 80% 81% 83% 85% 80% 81% 83% 85% LSD
Hardness 762 731 546 485 695 720 683 680 636 562 555 512 599 638 599 578 809698 628 535 89
Deform 6.7 7.3 6.8 6.5 7.5 7.8 7.7 7.1 6.9 7.3 6.5 6.4 7.5 7.5 7.1 6.2 8.17.7 7.4 6.6 0.7

Ex Water 23.9 24.1 26.4 27.0 20.7 21.5 24.2 23.1 21.7 23.2 23.6 24.9 20.9 23.2 23.6 24.3 20.9 22.6 23.6 24.9 1.3
Whiteness 42.0 39.0 41.1 45.9 34.4 26.1 26.9 25.5 30.9 26.2 28.1 26.7 35.1 36.2 33.7 35.1 34.0 30.8 29.3 30.6 1.7

5% Jet-cooked β-Con-richControl 5% Jet-cooked WF SPI 5% Jet-cooked GSSP SPI 5% Jet-cooked Gly-rich

aForce (g) required to break gel, bDistance (mm) travelled when gel breaks, cWater (%) pressed from gels, 
dWhiteness=100-[(100-L) 2 + a2 + b2]1/2 
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Table 9 – ANOVA of the texture and color properties of surimi gels as affected by 
moisture content 
 

Property Source DF Type III SS Mean 
Square 

F Value Pr > F 

 
Hardness 

repa 2 45484.3423 22742.1712 2.45 0.0995 
prtb 4 113990.3311 28497.5828 3.07 0.0274 

levelc 3 180024.0463 60008.0154 6.47 0.0012 
level*prt 12 137525.8966 11460.4914 1.24 0.2953 

 
Deformation 

rep 2 6.57757000 3.28878500 4.45 0.0184 
prt 4 4.24661667 1.06165417 1.44 0.2409 

level 3 4.77151167 1.59050389 2.15 0.1098 
level*prt 12 8.11526333 0.67627194 0.91 0.5418 

 
Expressible Water 

rep 2 73.46512333 36.73256167 9.44 0.0005 
prt 4 61.94281000 15.48570250 3.98 0.0086 

level 3 93.50743167 31.16914389 8.01 0.0003 
level*prt 12 8.28691000 0.69057583 0.18 0.9987 

 
Whiteness 

rep 2 36.119443 18.059722 4.61 0.0161 
prt 4 1638.166693 409.541673 104.52 <.0001 

level 3 119.748965 39.916322 10.19 <.0001 
level*prt 12 204.512293 17.042691 4.35 0.0002 

aReplicate,bProtein type,cLevel of  protein replacement 
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Figure 1 – Preparation of a Glycinin+Fiber-rich fraction from GSSP soybean flour. 
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Figure 2 – Gel-forming device with clamp 
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Figure 3 – Heating curve of surimi gel prepared without soy protein ingredients. 
The gel was cooked at 40 and 95°C. 
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Figure 4 – Hardness of gels prepared with different soy protein ingredients. Gels 
were made at 20% protein and cooked at 95°C. Soy protein isolate (SPI) and 
glycinin-rich (Gly) and β-conglycinin-rich (Bcon) fractions were either jet cooked or 
hydrogen peroxide treated (H2O2).  
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Figure 5 – Visual properties of 20% soy protein gels. Soy protein isolate (SPI) and 
Glycinin-rich (Gly) and β-conglycinin-rich (Bcon) fractions were either jet cooked 
(JC) or hydrogen peroxide treated (H2O2). 
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Figure 6 – Visual properties of surimi gels cooked at 90 and 95°C at 5% replacement level. Soy protein isolate (SPI) and 
Glycin-rich (Gly) and β-conglycinin-rich (Bcon) fractions were either jet cooked (JC) or hydrogen peroxide treated (H2O2). 
Gly+Fiber-rich fraction was treated with hydrogen peroxide only. 
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CHAPTER 5. GENERAL CONCLUSIONS 

 Chapter 2 of this dissertation is a study of the effects of high-pressure processing 

and storage conditions on the natural microflora of fresh unprocessed soymilk. The most 

effective treatment was the combination of HPP at 75°C followed by anaerobic storage, 

which reduced the microbial population the greatest while extending the protein stability 

of the soymilk. Pressures >400 MPa significantly reduced microbial counts. The total 

microbial load of soymilk was significantly affected by temperature. Dwell times of 1 

and 5 min were not significantly different and, therefore, a dwell time of 1 min would 

shorten processing time and reduce processing costs. Enterobacteriaceae did not grow 

during storage, while only 400 MPa at 25°C aerobic storage allowed any psychrotroph 

growth. All HPP treatments induced injury. The shelf-life of treated soymilk was 

extended by at least 2 wk longer than untreated soymilk based on the spoilage level of 

106 log CFU mL-1. 

The soymilk stability and pH were maintained throughout the storage study. HPP 

treatment enhanced shelf-life and shortened production time without affecting the quality 

characteristics of the soymilk. The present work shows that HPP has the potential to be 

an alternative commercial process to traditional thermal treatments for extending the 

shelf-life of refrigerated soymilk. 

Chapter 3 involved studying the use of GSSP soy protein ingredients as an 

extender in Alaskan pollock surimi. The GSSP soy protein ingredients were preserved 

with two methods (jet cooking and treating with H2O2, the surimi gels were cooked at 

two different temperatures with different moisture contents. The type of GSSP soy 

protein did not affect gel texture or color, except for the Gly+Fiber-rich fraction. At 95°C 
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second-stage cooking temperature, jet-cooked soy protein produced significantly harder 

gels compared to H2O2-treated soy protein. Second-stage cooking temperature 

significantly affected gel hardness and deformation of surimi gels; the gels were harder 

and more flexible when cooked at 95 than at 90°C. Deformation was not affected by 

protein type, level, preservation method, cooking temperature or moisture content. 

Moisture content had no significant impact on gel hardness, or deformation. Whiteness 

significantly decreased with increased second-stage cooking temperature and moisture 

content. Our study shows that surimi can be extended by replacing fish protein with 

GSSP soy protein ingredients up to 5% and further extending the surimi by increasing the 

moisture content of the surimi gels to 85% without affecting gel hardness, deformation, 

or expressible water.  

 

Recommendations for Future Research 

 Additional work is needed to analyze color, viscosity, flavor profile changes in 

pressure-treated soymilk during storage. Sensory attributes are important to consumers, 

so research is needed to analyze if HPP impacts color, texture and flavor in HPP-treated 

samples during storage.  

Future work involving food applications with soy protein isolate is needed. Work 

is needed to formulate and produce a soymilk from GSSP soy protein isolate and 

fractions. A sensory analysis needs to be done as well to show that these products will be 

accepted by consumers. 
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